Cargando…

The coordinated action of glucuronoyl esterase and α‐glucuronidase promotes the disassembly of lignin–carbohydrate complexes

Glucuronoxylans represent a significant fraction of woody biomass, and its decomposition is complicated by the presence of lignin–carbohydrate complexes (LCCs). Herein, LCCs from birchwood were used to investigate the potential coordinated action of a glucuronoyl esterase (TtCE15A) and two α‐glucuro...

Descripción completa

Detalles Bibliográficos
Autores principales: Raji, Olanrewaju, Arnling Bååth, Jenny, Vuong, Thu V., Larsbrink, Johan, Olsson, Lisbeth, Master, Emma R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044923/
https://www.ncbi.nlm.nih.gov/pubmed/33277689
http://dx.doi.org/10.1002/1873-3468.14019
Descripción
Sumario:Glucuronoxylans represent a significant fraction of woody biomass, and its decomposition is complicated by the presence of lignin–carbohydrate complexes (LCCs). Herein, LCCs from birchwood were used to investigate the potential coordinated action of a glucuronoyl esterase (TtCE15A) and two α‐glucuronidases (SdeAgu115A and AxyAgu115A). When supplementing α‐glucuronidase with equimolar quantities of TtCE15A, total MeGlcpA released after 72 h by SdeAgu115A and AxyAgu115A increased from 52% to 67%, and 61% to 95%, respectively. Based on the combined TtCE15A and AxyAgu115A activities, ~ 34% of MeGlcpA in the extracted birchwood glucuronoxylan was occupied as LCCs. Notably, insoluble LCC fractions reduced soluble α‐glucuronidase concentrations by up to 70%, whereas reduction in soluble TtCE15A was less than 30%, indicating different tendencies to adsorb onto the LCC substrate.