Cargando…
Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response
Schistosomiasis (Bilharziasis), a neglected tropical disease that affects more than 240 million people around the world, is caused by infection with the helminth parasite Schistosoma. As part of their secretome, schistosomes release extracellular vesicles (EVs) that modulate the host immune response...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044974/ https://www.ncbi.nlm.nih.gov/pubmed/33869080 http://dx.doi.org/10.3389/fcimb.2021.649480 |
_version_ | 1783678606828896256 |
---|---|
author | Avni, Dror Avni, Orly |
author_facet | Avni, Dror Avni, Orly |
author_sort | Avni, Dror |
collection | PubMed |
description | Schistosomiasis (Bilharziasis), a neglected tropical disease that affects more than 240 million people around the world, is caused by infection with the helminth parasite Schistosoma. As part of their secretome, schistosomes release extracellular vesicles (EVs) that modulate the host immune response. The EV-harbored miRNAs upregulate the innate immune response of the M1 pathway and downregulate the differentiation toward the adaptive Th2 immunity. A schistosomal egg-derived miRNA increases the percentage of regulatory T cells. This schistosomal-inducible immunoediting process generates ultimately a parasitic friendly environment that is applied carefully as restrained Th2 response is crucial for the host survival and successful excretion of the eggs. Evidence indicates a selective targeting of schistosomal EVs, however, the underlying mechanisms are unclear yet. The effects of the schistosomes on the host immune system is in accordance with the hygiene hypothesis, attributing the dramatic increase in recent decades in allergy and other diseases associated with imbalanced immune response, to the reduced exposure to infectious agents that co-evolved with humans during evolution. Deciphering the bioactive cargo, function, and selective targeting of the parasite-secreted EVs may facilitate the development of novel tools for diagnostics and delivered therapy to schistosomiasis, as well as to immune-associated disorders. |
format | Online Article Text |
id | pubmed-8044974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80449742021-04-15 Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response Avni, Dror Avni, Orly Front Cell Infect Microbiol Cellular and Infection Microbiology Schistosomiasis (Bilharziasis), a neglected tropical disease that affects more than 240 million people around the world, is caused by infection with the helminth parasite Schistosoma. As part of their secretome, schistosomes release extracellular vesicles (EVs) that modulate the host immune response. The EV-harbored miRNAs upregulate the innate immune response of the M1 pathway and downregulate the differentiation toward the adaptive Th2 immunity. A schistosomal egg-derived miRNA increases the percentage of regulatory T cells. This schistosomal-inducible immunoediting process generates ultimately a parasitic friendly environment that is applied carefully as restrained Th2 response is crucial for the host survival and successful excretion of the eggs. Evidence indicates a selective targeting of schistosomal EVs, however, the underlying mechanisms are unclear yet. The effects of the schistosomes on the host immune system is in accordance with the hygiene hypothesis, attributing the dramatic increase in recent decades in allergy and other diseases associated with imbalanced immune response, to the reduced exposure to infectious agents that co-evolved with humans during evolution. Deciphering the bioactive cargo, function, and selective targeting of the parasite-secreted EVs may facilitate the development of novel tools for diagnostics and delivered therapy to schistosomiasis, as well as to immune-associated disorders. Frontiers Media S.A. 2021-03-18 /pmc/articles/PMC8044974/ /pubmed/33869080 http://dx.doi.org/10.3389/fcimb.2021.649480 Text en Copyright © 2021 Avni and Avni https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cellular and Infection Microbiology Avni, Dror Avni, Orly Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response |
title | Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response |
title_full | Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response |
title_fullStr | Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response |
title_full_unstemmed | Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response |
title_short | Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response |
title_sort | extracellular vesicles: schistosomal long-range precise weapon to manipulate the immune response |
topic | Cellular and Infection Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044974/ https://www.ncbi.nlm.nih.gov/pubmed/33869080 http://dx.doi.org/10.3389/fcimb.2021.649480 |
work_keys_str_mv | AT avnidror extracellularvesiclesschistosomallongrangepreciseweapontomanipulatetheimmuneresponse AT avniorly extracellularvesiclesschistosomallongrangepreciseweapontomanipulatetheimmuneresponse |