Cargando…
Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks
BACKGROUND: In oncology, the correct determination of nodal metastatic disease is essential for patient management, as patient treatment and prognosis are closely linked to the stage of the disease. The aim of the study was to develop a tool for automatic 3D detection and segmentation of lymph nodes...
Autores principales: | Iuga, Andra-Iza, Carolus, Heike, Höink, Anna J., Brosch, Tom, Klinder, Tobias, Maintz, David, Persigehl, Thorsten, Baeßler, Bettina, Püsken, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8045346/ https://www.ncbi.nlm.nih.gov/pubmed/33849483 http://dx.doi.org/10.1186/s12880-021-00599-z |
Ejemplares similares
-
Automated localization and segmentation of cervical lymph nodes on contrast-enhanced CT using a 3D foveal fully convolutional neural network
por: Rinneburger, Miriam, et al.
Publicado: (2023) -
Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer
por: Laqua, Fabian Christopher, et al.
Publicado: (2023) -
Diagnostic value of spectral reconstructions in detecting incidental skeletal muscle metastases in CT staging examinations
por: Lennartz, Simon, et al.
Publicado: (2019) -
Conventional and Deep-Learning-Based Image Reconstructions of Undersampled K-Space Data of the Lumbar Spine Using Compressed Sensing in MRI: A Comparative Study on 20 Subjects
por: Fervers, Philipp, et al.
Publicado: (2023) -
Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers
por: Dratsch, Thomas, et al.
Publicado: (2023)