Cargando…
Computational Image Analysis Identifies Histopathological Image Features Associated With Somatic Mutations and Patient Survival in Gastric Adenocarcinoma
Computational analysis of histopathological images can identify sub-visual objective image features that may not be visually distinguishable by human eyes, and hence provides better modeling of disease phenotypes. This study aims to investigate whether specific image features are associated with som...
Autores principales: | Cheng, Jun, Liu, Yuting, Huang, Wei, Hong, Wenhui, Wang, Lingling, Zhan, Xiaohui, Han, Zhi, Ni, Dong, Huang, Kun, Zhang, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8045755/ https://www.ncbi.nlm.nih.gov/pubmed/33869007 http://dx.doi.org/10.3389/fonc.2021.623382 |
Ejemplares similares
-
Deep learning-based morphological feature analysis and the prognostic association study in colon adenocarcinoma histopathological images
por: Xiao, Xiao, et al.
Publicado: (2023) -
Integrative Analysis of Histopathological Images and Genomic Data in Colon Adenocarcinoma
por: Li, Hui, et al.
Publicado: (2021) -
Predicting Tumor Mutational Burden From Lung Adenocarcinoma Histopathological Images Using Deep Learning
por: Niu, Yi, et al.
Publicado: (2022) -
Identifying Prognostic Markers From Clinical, Radiomics, and Deep Learning Imaging Features for Gastric Cancer Survival Prediction
por: Hao, Degan, et al.
Publicado: (2022) -
Evaluating the Histopathology of Pancreatic Ductal Adenocarcinoma by Intravoxel Incoherent Motion-Diffusion Weighted Imaging Comparing With Diffusion-Weighted Imaging
por: Liu, Qi, et al.
Publicado: (2021)