Cargando…

Regression dynamic causal modeling for resting‐state fMRI

“Resting‐state” functional magnetic resonance imaging (rs‐fMRI) is widely used to study brain connectivity. So far, researchers have been restricted to measures of functional connectivity that are computationally efficient but undirected, or to effective connectivity estimates that are directed but...

Descripción completa

Detalles Bibliográficos
Autores principales: Frässle, Stefan, Harrison, Samuel J., Heinzle, Jakob, Clementz, Brett A., Tamminga, Carol A., Sweeney, John A., Gershon, Elliot S., Keshavan, Matcheri S., Pearlson, Godfrey D., Powers, Albert, Stephan, Klaas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046067/
https://www.ncbi.nlm.nih.gov/pubmed/33539625
http://dx.doi.org/10.1002/hbm.25357
_version_ 1783678776673042432
author Frässle, Stefan
Harrison, Samuel J.
Heinzle, Jakob
Clementz, Brett A.
Tamminga, Carol A.
Sweeney, John A.
Gershon, Elliot S.
Keshavan, Matcheri S.
Pearlson, Godfrey D.
Powers, Albert
Stephan, Klaas E.
author_facet Frässle, Stefan
Harrison, Samuel J.
Heinzle, Jakob
Clementz, Brett A.
Tamminga, Carol A.
Sweeney, John A.
Gershon, Elliot S.
Keshavan, Matcheri S.
Pearlson, Godfrey D.
Powers, Albert
Stephan, Klaas E.
author_sort Frässle, Stefan
collection PubMed
description “Resting‐state” functional magnetic resonance imaging (rs‐fMRI) is widely used to study brain connectivity. So far, researchers have been restricted to measures of functional connectivity that are computationally efficient but undirected, or to effective connectivity estimates that are directed but limited to small networks. Here, we show that a method recently developed for task‐fMRI—regression dynamic causal modeling (rDCM)—extends to rs‐fMRI and offers both directional estimates and scalability to whole‐brain networks. First, simulations demonstrate that rDCM faithfully recovers parameter values over a wide range of signal‐to‐noise ratios and repetition times. Second, we test construct validity of rDCM in relation to an established model of effective connectivity, spectral DCM. Using rs‐fMRI data from nearly 200 healthy participants, rDCM produces biologically plausible results consistent with estimates by spectral DCM. Importantly, rDCM is computationally highly efficient, reconstructing whole‐brain networks (>200 areas) within minutes on standard hardware. This opens promising new avenues for connectomics.
format Online
Article
Text
id pubmed-8046067
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-80460672021-04-16 Regression dynamic causal modeling for resting‐state fMRI Frässle, Stefan Harrison, Samuel J. Heinzle, Jakob Clementz, Brett A. Tamminga, Carol A. Sweeney, John A. Gershon, Elliot S. Keshavan, Matcheri S. Pearlson, Godfrey D. Powers, Albert Stephan, Klaas E. Hum Brain Mapp Research Articles “Resting‐state” functional magnetic resonance imaging (rs‐fMRI) is widely used to study brain connectivity. So far, researchers have been restricted to measures of functional connectivity that are computationally efficient but undirected, or to effective connectivity estimates that are directed but limited to small networks. Here, we show that a method recently developed for task‐fMRI—regression dynamic causal modeling (rDCM)—extends to rs‐fMRI and offers both directional estimates and scalability to whole‐brain networks. First, simulations demonstrate that rDCM faithfully recovers parameter values over a wide range of signal‐to‐noise ratios and repetition times. Second, we test construct validity of rDCM in relation to an established model of effective connectivity, spectral DCM. Using rs‐fMRI data from nearly 200 healthy participants, rDCM produces biologically plausible results consistent with estimates by spectral DCM. Importantly, rDCM is computationally highly efficient, reconstructing whole‐brain networks (>200 areas) within minutes on standard hardware. This opens promising new avenues for connectomics. John Wiley & Sons, Inc. 2021-02-04 /pmc/articles/PMC8046067/ /pubmed/33539625 http://dx.doi.org/10.1002/hbm.25357 Text en © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Frässle, Stefan
Harrison, Samuel J.
Heinzle, Jakob
Clementz, Brett A.
Tamminga, Carol A.
Sweeney, John A.
Gershon, Elliot S.
Keshavan, Matcheri S.
Pearlson, Godfrey D.
Powers, Albert
Stephan, Klaas E.
Regression dynamic causal modeling for resting‐state fMRI
title Regression dynamic causal modeling for resting‐state fMRI
title_full Regression dynamic causal modeling for resting‐state fMRI
title_fullStr Regression dynamic causal modeling for resting‐state fMRI
title_full_unstemmed Regression dynamic causal modeling for resting‐state fMRI
title_short Regression dynamic causal modeling for resting‐state fMRI
title_sort regression dynamic causal modeling for resting‐state fmri
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046067/
https://www.ncbi.nlm.nih.gov/pubmed/33539625
http://dx.doi.org/10.1002/hbm.25357
work_keys_str_mv AT frasslestefan regressiondynamiccausalmodelingforrestingstatefmri
AT harrisonsamuelj regressiondynamiccausalmodelingforrestingstatefmri
AT heinzlejakob regressiondynamiccausalmodelingforrestingstatefmri
AT clementzbretta regressiondynamiccausalmodelingforrestingstatefmri
AT tammingacarola regressiondynamiccausalmodelingforrestingstatefmri
AT sweeneyjohna regressiondynamiccausalmodelingforrestingstatefmri
AT gershonelliots regressiondynamiccausalmodelingforrestingstatefmri
AT keshavanmatcheris regressiondynamiccausalmodelingforrestingstatefmri
AT pearlsongodfreyd regressiondynamiccausalmodelingforrestingstatefmri
AT powersalbert regressiondynamiccausalmodelingforrestingstatefmri
AT stephanklaase regressiondynamiccausalmodelingforrestingstatefmri