Cargando…
Decoding the Genetic Alterations in Genes of DNMT Family (DNA Methyl-Transferase) and their Association with Head and Neck Squamous Cell Carcinoma
OBJECTIVE: Epigenetic modifications are gaining focus due to their indirect association with tumorigenesis. DNA methylation plays a prime role in regulation of gene expression. Any aberrations in this gene family may lead to chromosomal instability and increased magnitude of tumour progression. In l...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046301/ https://www.ncbi.nlm.nih.gov/pubmed/33369458 http://dx.doi.org/10.31557/APJCP.2020.21.12.3605 |
_version_ | 1783678819830333440 |
---|---|
author | Fathima, Tahreem Arumugam, Paramasivam AS, Smiline Girija Priyadharsini, J Vijayashree |
author_facet | Fathima, Tahreem Arumugam, Paramasivam AS, Smiline Girija Priyadharsini, J Vijayashree |
author_sort | Fathima, Tahreem |
collection | PubMed |
description | OBJECTIVE: Epigenetic modifications are gaining focus due to their indirect association with tumorigenesis. DNA methylation plays a prime role in regulation of gene expression. Any aberrations in this gene family may lead to chromosomal instability and increased magnitude of tumour progression. In line with the above fact, the present study has been designed to identify genetic alterations in the genes of the DNMT (DNA methyl-transferase) family among head and neck squamous cell carcinoma patients (HNSCC). METHODS: The present study follows an observational design employing computational tools for analysis. The TCGA-Firehose Legacy data was assessed using the cBioportal database. The dataset comprised of 530 samples from HNSCC patients which were assessed for genetic alterations in the DNMT family. Furthermore, the protein stability analysis and pathogenicity of the mutations were assessed using I-Mutant Suite and PROVEAN tools. RESULTS: Almost all genes of the DNMT family harboured gene amplification. The TRDMT1 and DNMT3L genes showed deep deletions. Apart from these several non-synonymous, truncating and splice-site mutations were also documented. Protein stability and pathogenicity analysis revealed that majority of the mutations were found to decrease the stability and impose pathogenicity. Upon probing for reported mutations using gnomAD database, around six reference single nucleotide polymorphisms were identified which were found to exhibit a minor allele frequency less than 0.01. CONCLUSIONS: Screening of an exhaustive collection of patient’s samples could provide immense knowledge about the disease pathogenesis and identification of therapeutic leads. The variants identified in the present study could be used as diagnostic markers. However, further experimental analysis through genotyping assay is warranted to validate the present findings. |
format | Online Article Text |
id | pubmed-8046301 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | West Asia Organization for Cancer Prevention |
record_format | MEDLINE/PubMed |
spelling | pubmed-80463012021-04-16 Decoding the Genetic Alterations in Genes of DNMT Family (DNA Methyl-Transferase) and their Association with Head and Neck Squamous Cell Carcinoma Fathima, Tahreem Arumugam, Paramasivam AS, Smiline Girija Priyadharsini, J Vijayashree Asian Pac J Cancer Prev Research Article OBJECTIVE: Epigenetic modifications are gaining focus due to their indirect association with tumorigenesis. DNA methylation plays a prime role in regulation of gene expression. Any aberrations in this gene family may lead to chromosomal instability and increased magnitude of tumour progression. In line with the above fact, the present study has been designed to identify genetic alterations in the genes of the DNMT (DNA methyl-transferase) family among head and neck squamous cell carcinoma patients (HNSCC). METHODS: The present study follows an observational design employing computational tools for analysis. The TCGA-Firehose Legacy data was assessed using the cBioportal database. The dataset comprised of 530 samples from HNSCC patients which were assessed for genetic alterations in the DNMT family. Furthermore, the protein stability analysis and pathogenicity of the mutations were assessed using I-Mutant Suite and PROVEAN tools. RESULTS: Almost all genes of the DNMT family harboured gene amplification. The TRDMT1 and DNMT3L genes showed deep deletions. Apart from these several non-synonymous, truncating and splice-site mutations were also documented. Protein stability and pathogenicity analysis revealed that majority of the mutations were found to decrease the stability and impose pathogenicity. Upon probing for reported mutations using gnomAD database, around six reference single nucleotide polymorphisms were identified which were found to exhibit a minor allele frequency less than 0.01. CONCLUSIONS: Screening of an exhaustive collection of patient’s samples could provide immense knowledge about the disease pathogenesis and identification of therapeutic leads. The variants identified in the present study could be used as diagnostic markers. However, further experimental analysis through genotyping assay is warranted to validate the present findings. West Asia Organization for Cancer Prevention 2020-12 /pmc/articles/PMC8046301/ /pubmed/33369458 http://dx.doi.org/10.31557/APJCP.2020.21.12.3605 Text en https://creativecommons.org/licenses/by/3.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/ (https://creativecommons.org/licenses/by/3.0/) ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Fathima, Tahreem Arumugam, Paramasivam AS, Smiline Girija Priyadharsini, J Vijayashree Decoding the Genetic Alterations in Genes of DNMT Family (DNA Methyl-Transferase) and their Association with Head and Neck Squamous Cell Carcinoma |
title | Decoding the Genetic Alterations in Genes of DNMT Family (DNA Methyl-Transferase) and their Association with Head and Neck Squamous Cell Carcinoma |
title_full | Decoding the Genetic Alterations in Genes of DNMT Family (DNA Methyl-Transferase) and their Association with Head and Neck Squamous Cell Carcinoma |
title_fullStr | Decoding the Genetic Alterations in Genes of DNMT Family (DNA Methyl-Transferase) and their Association with Head and Neck Squamous Cell Carcinoma |
title_full_unstemmed | Decoding the Genetic Alterations in Genes of DNMT Family (DNA Methyl-Transferase) and their Association with Head and Neck Squamous Cell Carcinoma |
title_short | Decoding the Genetic Alterations in Genes of DNMT Family (DNA Methyl-Transferase) and their Association with Head and Neck Squamous Cell Carcinoma |
title_sort | decoding the genetic alterations in genes of dnmt family (dna methyl-transferase) and their association with head and neck squamous cell carcinoma |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046301/ https://www.ncbi.nlm.nih.gov/pubmed/33369458 http://dx.doi.org/10.31557/APJCP.2020.21.12.3605 |
work_keys_str_mv | AT fathimatahreem decodingthegeneticalterationsingenesofdnmtfamilydnamethyltransferaseandtheirassociationwithheadandnecksquamouscellcarcinoma AT arumugamparamasivam decodingthegeneticalterationsingenesofdnmtfamilydnamethyltransferaseandtheirassociationwithheadandnecksquamouscellcarcinoma AT assmilinegirija decodingthegeneticalterationsingenesofdnmtfamilydnamethyltransferaseandtheirassociationwithheadandnecksquamouscellcarcinoma AT priyadharsinijvijayashree decodingthegeneticalterationsingenesofdnmtfamilydnamethyltransferaseandtheirassociationwithheadandnecksquamouscellcarcinoma |