Cargando…
Constraint-induced intervention as an emergent phenomenon from synaptic competition in biological systems
The principle of constraint-induced therapy is widely practiced in rehabilitation. In hemiplegic cerebral palsy (CP) with impaired contralateral corticospinal projection due to unilateral injury, function improves after imposing a temporary constraint on limbs from the less affected hemisphere. This...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046695/ https://www.ncbi.nlm.nih.gov/pubmed/33825082 http://dx.doi.org/10.1007/s10827-021-00782-9 |
Sumario: | The principle of constraint-induced therapy is widely practiced in rehabilitation. In hemiplegic cerebral palsy (CP) with impaired contralateral corticospinal projection due to unilateral injury, function improves after imposing a temporary constraint on limbs from the less affected hemisphere. This type of partially-reversible impairment in motor control by early brain injury bears a resemblance to the experience-dependent plastic acquisition and modification of neuronal response selectivity in the visual cortex. Previously, such mechanism was modeled within the framework of BCM (Bienenstock-Cooper-Munro) theory, a rate-based synaptic modification theory. Here, we demonstrate a minimally complex yet sufficient neural network model which provides a fundamental explanation for inter-hemispheric competition using a simplified spike-based model of information transmission and plasticity. We emulate the restoration of function in hemiplegic CP by simulating the competition between cells of the ipsilateral and contralateral corticospinal tracts. We use a high-speed hardware neural simulation to provide realistic numbers of spikes and realistic magnitudes of synaptic modification. We demonstrate that the phenomenon of constraint-induced partial reversal of hemiplegia can be modeled by simplified neural descending tracts with 2 layers of spiking neurons and synapses with spike-timing-dependent plasticity (STDP). We further demonstrate that persistent hemiplegia following unilateral cortical inactivation or deprivation is predicted by the STDP-based model but is inconsistent with BCM model. Although our model is a highly simplified and limited representation of the corticospinal system, it offers an explanation of how constraint as an intervention can help the system to escape from a suboptimal solution. This is a display of an emergent phenomenon from the synaptic competition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10827-021-00782-9. |
---|