Cargando…

Experimental study of non-oxidized and oxidized bitumen obtained from heavy oil

Heavy oil and vacuum residue were used to obtain road bitumen BND 50/70 using two different methods of steam distillation at 323–362 °C and by oxidation, a method using packed column at temperature of 211–220 °C. The obtained residues using two methods steam distillation and oxidation are known as n...

Descripción completa

Detalles Bibliográficos
Autores principales: Djimasbe, Richard, Galiullin, Eduard A., Varfolomeev, Mikhail A., Fakhrutdinov, Revo Z., Al-Muntaser, Ameen A., Farhadian, Abdolreza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046809/
https://www.ncbi.nlm.nih.gov/pubmed/33854080
http://dx.doi.org/10.1038/s41598-021-87398-2
Descripción
Sumario:Heavy oil and vacuum residue were used to obtain road bitumen BND 50/70 using two different methods of steam distillation at 323–362 °C and by oxidation, a method using packed column at temperature of 211–220 °C. The obtained residues using two methods steam distillation and oxidation are known as non-oxidized bitumen and oxidized bitumen, respectively. The products were evaluated using different standards including GOST 33133-2014, GOST 22245-90, and ASTM D5. The results showed that the yield of oxidized bitumen reached a maximal rate of 89.59% wt., while that of non-oxidized bitumen is 55% wt. The softening point of oxidized bitumen is 49–57 °C compared to non-oxidized bitumen (46–49 °C). Remarkably, the previous softening point and penetrability of 47–71 points of oxidized bitumen are consistent with norms to BND 50/70 bitumen, according standard. The non-oxidized bitumen has a relatively low softening point and a higher penetration value of 71–275, which refers to BND 200/300 bitumen. Comparatively, the use of a packed column is beneficial than the steam distillation, due to high capability of the nozzles to strengthens contact between feedstock and compressed air in the reaction zone and decreases the reaction time to 4.15 h.