Cargando…

In situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats

Integrating information on species-specific sensory perception with spatial activity provides a high-resolution understanding of how animals explore environments, yet frequently used exploration assays commonly ignore sensory acquisition as a measure for exploration. Echolocation is an active sensin...

Descripción completa

Detalles Bibliográficos
Autores principales: Schabacker, Theresa, Lindecke, Oliver, Rizzi, Sofia, Marggraf, Lara, Pētersons, Gunārs, Voigt, Christian C., Snijders, Lysanne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046999/
https://www.ncbi.nlm.nih.gov/pubmed/33854128
http://dx.doi.org/10.1038/s41598-021-87588-y
_version_ 1783678952768798720
author Schabacker, Theresa
Lindecke, Oliver
Rizzi, Sofia
Marggraf, Lara
Pētersons, Gunārs
Voigt, Christian C.
Snijders, Lysanne
author_facet Schabacker, Theresa
Lindecke, Oliver
Rizzi, Sofia
Marggraf, Lara
Pētersons, Gunārs
Voigt, Christian C.
Snijders, Lysanne
author_sort Schabacker, Theresa
collection PubMed
description Integrating information on species-specific sensory perception with spatial activity provides a high-resolution understanding of how animals explore environments, yet frequently used exploration assays commonly ignore sensory acquisition as a measure for exploration. Echolocation is an active sensing system used by hundreds of mammal species, primarily bats. As echolocation call activity can be reliably quantified, bats present an excellent model system to investigate intraspecific variation in environmental cue sampling. Here, we developed an in situ roost-like novel environment assay for tree-roosting bats. We repeatedly tested 52 individuals of the migratory bat species, Pipistrellus nathusii, across 24 h, to examine the role of echolocation when crawling through a maze-type arena and test for consistent intraspecific variation in sensory-based exploration. We reveal a strong correlation between echolocation call activity and spatial activity. Moreover, we show that during the exploration of the maze, individuals consistently differed in spatial activity as well as echolocation call activity, given their spatial activity, a behavioral response we term ’acoustic exploration’. Acoustic exploration was correlated with other exploratory behaviors, but not with emergence latency. We here present a relevant new measure for exploration behavior and provide evidence for consistent (short-term) intra-specific variation in the level at which wild bats collect information from a novel environment.
format Online
Article
Text
id pubmed-8046999
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-80469992021-04-15 In situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats Schabacker, Theresa Lindecke, Oliver Rizzi, Sofia Marggraf, Lara Pētersons, Gunārs Voigt, Christian C. Snijders, Lysanne Sci Rep Article Integrating information on species-specific sensory perception with spatial activity provides a high-resolution understanding of how animals explore environments, yet frequently used exploration assays commonly ignore sensory acquisition as a measure for exploration. Echolocation is an active sensing system used by hundreds of mammal species, primarily bats. As echolocation call activity can be reliably quantified, bats present an excellent model system to investigate intraspecific variation in environmental cue sampling. Here, we developed an in situ roost-like novel environment assay for tree-roosting bats. We repeatedly tested 52 individuals of the migratory bat species, Pipistrellus nathusii, across 24 h, to examine the role of echolocation when crawling through a maze-type arena and test for consistent intraspecific variation in sensory-based exploration. We reveal a strong correlation between echolocation call activity and spatial activity. Moreover, we show that during the exploration of the maze, individuals consistently differed in spatial activity as well as echolocation call activity, given their spatial activity, a behavioral response we term ’acoustic exploration’. Acoustic exploration was correlated with other exploratory behaviors, but not with emergence latency. We here present a relevant new measure for exploration behavior and provide evidence for consistent (short-term) intra-specific variation in the level at which wild bats collect information from a novel environment. Nature Publishing Group UK 2021-04-14 /pmc/articles/PMC8046999/ /pubmed/33854128 http://dx.doi.org/10.1038/s41598-021-87588-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Schabacker, Theresa
Lindecke, Oliver
Rizzi, Sofia
Marggraf, Lara
Pētersons, Gunārs
Voigt, Christian C.
Snijders, Lysanne
In situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats
title In situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats
title_full In situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats
title_fullStr In situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats
title_full_unstemmed In situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats
title_short In situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats
title_sort in situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046999/
https://www.ncbi.nlm.nih.gov/pubmed/33854128
http://dx.doi.org/10.1038/s41598-021-87588-y
work_keys_str_mv AT schabackertheresa insitunovelenvironmentassayrevealsacousticexplorationasarepeatablebehavioralresponseinmigratorybats
AT lindeckeoliver insitunovelenvironmentassayrevealsacousticexplorationasarepeatablebehavioralresponseinmigratorybats
AT rizzisofia insitunovelenvironmentassayrevealsacousticexplorationasarepeatablebehavioralresponseinmigratorybats
AT marggraflara insitunovelenvironmentassayrevealsacousticexplorationasarepeatablebehavioralresponseinmigratorybats
AT petersonsgunars insitunovelenvironmentassayrevealsacousticexplorationasarepeatablebehavioralresponseinmigratorybats
AT voigtchristianc insitunovelenvironmentassayrevealsacousticexplorationasarepeatablebehavioralresponseinmigratorybats
AT snijderslysanne insitunovelenvironmentassayrevealsacousticexplorationasarepeatablebehavioralresponseinmigratorybats