Cargando…

Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence

The high infectivity of SARS-CoV-2 makes it essential to develop a rapid and accurate diagnostic test so that carriers can be isolated at an early stage. Viral RNA in nasopharyngeal samples by RT-PCR is currently considered the reference method although it is not recognized as a strong gold standard...

Descripción completa

Detalles Bibliográficos
Autores principales: Deulofeu, Meritxell, García-Cuesta, Esteban, Peña-Méndez, Eladia María, Conde, José Elías, Jiménez-Romero, Orlando, Verdú, Enrique, Serrando, María Teresa, Salvadó, Victoria, Boadas-Vaello, Pere
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047105/
https://www.ncbi.nlm.nih.gov/pubmed/33869258
http://dx.doi.org/10.3389/fmed.2021.661358
_version_ 1783678977234173952
author Deulofeu, Meritxell
García-Cuesta, Esteban
Peña-Méndez, Eladia María
Conde, José Elías
Jiménez-Romero, Orlando
Verdú, Enrique
Serrando, María Teresa
Salvadó, Victoria
Boadas-Vaello, Pere
author_facet Deulofeu, Meritxell
García-Cuesta, Esteban
Peña-Méndez, Eladia María
Conde, José Elías
Jiménez-Romero, Orlando
Verdú, Enrique
Serrando, María Teresa
Salvadó, Victoria
Boadas-Vaello, Pere
author_sort Deulofeu, Meritxell
collection PubMed
description The high infectivity of SARS-CoV-2 makes it essential to develop a rapid and accurate diagnostic test so that carriers can be isolated at an early stage. Viral RNA in nasopharyngeal samples by RT-PCR is currently considered the reference method although it is not recognized as a strong gold standard due to certain drawbacks. Here we develop a methodology combining the analysis of from human nasopharyngeal (NP) samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with the use of machine learning (ML). A total of 236 NP samples collected in two different viral transport media were analyzed with minimal sample preparation and the subsequent mass spectra data was used to build different ML models with two different techniques. The best model showed high performance in terms of accuracy, sensitivity and specificity, in all cases reaching values higher than 90%. Our results suggest that the analysis of NP samples by MALDI-TOF MS and ML is a simple, safe, fast and economic diagnostic test for COVID-19.
format Online
Article
Text
id pubmed-8047105
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-80471052021-04-16 Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence Deulofeu, Meritxell García-Cuesta, Esteban Peña-Méndez, Eladia María Conde, José Elías Jiménez-Romero, Orlando Verdú, Enrique Serrando, María Teresa Salvadó, Victoria Boadas-Vaello, Pere Front Med (Lausanne) Medicine The high infectivity of SARS-CoV-2 makes it essential to develop a rapid and accurate diagnostic test so that carriers can be isolated at an early stage. Viral RNA in nasopharyngeal samples by RT-PCR is currently considered the reference method although it is not recognized as a strong gold standard due to certain drawbacks. Here we develop a methodology combining the analysis of from human nasopharyngeal (NP) samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with the use of machine learning (ML). A total of 236 NP samples collected in two different viral transport media were analyzed with minimal sample preparation and the subsequent mass spectra data was used to build different ML models with two different techniques. The best model showed high performance in terms of accuracy, sensitivity and specificity, in all cases reaching values higher than 90%. Our results suggest that the analysis of NP samples by MALDI-TOF MS and ML is a simple, safe, fast and economic diagnostic test for COVID-19. Frontiers Media S.A. 2021-04-01 /pmc/articles/PMC8047105/ /pubmed/33869258 http://dx.doi.org/10.3389/fmed.2021.661358 Text en Copyright © 2021 Deulofeu, García-Cuesta, Peña-Méndez, Conde, Jiménez-Romero, Verdú, Serrando, Salvadó and Boadas-Vaello. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Medicine
Deulofeu, Meritxell
García-Cuesta, Esteban
Peña-Méndez, Eladia María
Conde, José Elías
Jiménez-Romero, Orlando
Verdú, Enrique
Serrando, María Teresa
Salvadó, Victoria
Boadas-Vaello, Pere
Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence
title Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence
title_full Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence
title_fullStr Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence
title_full_unstemmed Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence
title_short Detection of SARS-CoV-2 Infection in Human Nasopharyngeal Samples by Combining MALDI-TOF MS and Artificial Intelligence
title_sort detection of sars-cov-2 infection in human nasopharyngeal samples by combining maldi-tof ms and artificial intelligence
topic Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047105/
https://www.ncbi.nlm.nih.gov/pubmed/33869258
http://dx.doi.org/10.3389/fmed.2021.661358
work_keys_str_mv AT deulofeumeritxell detectionofsarscov2infectioninhumannasopharyngealsamplesbycombiningmalditofmsandartificialintelligence
AT garciacuestaesteban detectionofsarscov2infectioninhumannasopharyngealsamplesbycombiningmalditofmsandartificialintelligence
AT penamendezeladiamaria detectionofsarscov2infectioninhumannasopharyngealsamplesbycombiningmalditofmsandartificialintelligence
AT condejoseelias detectionofsarscov2infectioninhumannasopharyngealsamplesbycombiningmalditofmsandartificialintelligence
AT jimenezromeroorlando detectionofsarscov2infectioninhumannasopharyngealsamplesbycombiningmalditofmsandartificialintelligence
AT verduenrique detectionofsarscov2infectioninhumannasopharyngealsamplesbycombiningmalditofmsandartificialintelligence
AT serrandomariateresa detectionofsarscov2infectioninhumannasopharyngealsamplesbycombiningmalditofmsandartificialintelligence
AT salvadovictoria detectionofsarscov2infectioninhumannasopharyngealsamplesbycombiningmalditofmsandartificialintelligence
AT boadasvaellopere detectionofsarscov2infectioninhumannasopharyngealsamplesbycombiningmalditofmsandartificialintelligence