Cargando…
SeBioGraph: Semi-supervised Deep Learning for the Graph via Sustainable Knowledge Transfer
Semi-supervised deep learning for the biomedical graph and advanced manufacturing graph is rapidly becoming an important topic in both academia and industry. Many existing types of research focus on semi-supervised link prediction and node classification, as well as the application of these methods...
Autores principales: | Ma, Yugang, Li, Qing, Hu, Nan, Li, Lili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047129/ https://www.ncbi.nlm.nih.gov/pubmed/33867966 http://dx.doi.org/10.3389/fnbot.2021.665055 |
Ejemplares similares
-
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
por: Wang, Yifan, et al.
Publicado: (2023) -
Person re-identification via semi-supervised adaptive graph embedding
por: Liu, Jiao, et al.
Publicado: (2022) -
Semi-Supervised Multi-View Clustering with Weighted Anchor Graph Embedding
por: Wang, Senhong, et al.
Publicado: (2021) -
A Semi-Supervised Graph Convolutional Network for Early Prediction of Motor Abnormalities in Very Preterm Infants
por: Li, Hailong, et al.
Publicado: (2023) -
Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks
por: Wang, Juexin, et al.
Publicado: (2020)