Cargando…
Spiking Neural Network for Augmenting Electroencephalographic Data for Brain Computer Interfaces
With the advent of advanced machine learning methods, the performance of brain–computer interfaces (BCIs) has improved unprecedentedly. However, electroencephalography (EEG), a commonly used brain imaging method for BCI, is characterized by a tedious experimental setup, frequent data loss due to art...
Autores principales: | Singanamalla, Sai Kalyan Ranga, Lin, Chin-Teng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047134/ https://www.ncbi.nlm.nih.gov/pubmed/33867928 http://dx.doi.org/10.3389/fnins.2021.651762 |
Ejemplares similares
-
Spike-Representation of EEG Signals for Performance Enhancement of Brain-Computer Interfaces
por: Singanamalla, Sai Kalyan Ranga, et al.
Publicado: (2022) -
A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
por: Kaya, Murat, et al.
Publicado: (2018) -
Perception and Cognition of Cues Used in Synchronous Brain–Computer Interfaces Modify Electroencephalographic Patterns of Control Tasks
por: Alonso-Valerdi, Luz María, et al.
Publicado: (2015) -
Sparse Computation in Adaptive Spiking Neural Networks
por: Zambrano, Davide, et al.
Publicado: (2019) -
Editorial: Brain-Computer Interfaces and Augmented/Virtual Reality
por: Putze, Felix, et al.
Publicado: (2020)