Cargando…
Dynamic Histone H3 Modifications Regulate Meiosis Initiation via Respiration
Meiosis is essential for genetic stability and diversity during sexual reproduction in most eukaryotes. Chromatin structure and gene expression are drastically changed during meiosis, and various histone modifications have been reported to participate in this unique process. However, the dynamic of...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047140/ https://www.ncbi.nlm.nih.gov/pubmed/33869198 http://dx.doi.org/10.3389/fcell.2021.646214 |
_version_ | 1783678985369026560 |
---|---|
author | Shi, Jian Ma, Yanjie Hua, Hui Liu, Yujiao Li, Wei Yu, Hongxiu Liu, Chao |
author_facet | Shi, Jian Ma, Yanjie Hua, Hui Liu, Yujiao Li, Wei Yu, Hongxiu Liu, Chao |
author_sort | Shi, Jian |
collection | PubMed |
description | Meiosis is essential for genetic stability and diversity during sexual reproduction in most eukaryotes. Chromatin structure and gene expression are drastically changed during meiosis, and various histone modifications have been reported to participate in this unique process. However, the dynamic of histone modifications during meiosis is still not well investigated. Here, by using multiple reaction monitoring (MRM) based LC-MS/MS, we detected dynamic changes of histone H3 lysine post-translational modifications (PTMs). We firstly quantified the precise percentage of H3 modifications on different lysine sites during mouse and yeast meiosis, and found H3 acetylation and methylation were dramatically changed. To further study the potential functions of H3 acetylation and methylation in meiosis, we performed histone H3 lysine mutant screening in yeast, and found that yeast strains lacking H3K18 acetylation (H3K18ac) failed to initiate meiosis due to insufficient IME1 expression. Further studies showed that the absence of H3K18ac impaired respiration, leading to the reduction of Rim101p, which further upregulated a negative regulator of IME1 transcription, Smp1p. Together, our studies reveal a novel meiosis initiation pathway mediated by histone H3 modifications. |
format | Online Article Text |
id | pubmed-8047140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80471402021-04-16 Dynamic Histone H3 Modifications Regulate Meiosis Initiation via Respiration Shi, Jian Ma, Yanjie Hua, Hui Liu, Yujiao Li, Wei Yu, Hongxiu Liu, Chao Front Cell Dev Biol Cell and Developmental Biology Meiosis is essential for genetic stability and diversity during sexual reproduction in most eukaryotes. Chromatin structure and gene expression are drastically changed during meiosis, and various histone modifications have been reported to participate in this unique process. However, the dynamic of histone modifications during meiosis is still not well investigated. Here, by using multiple reaction monitoring (MRM) based LC-MS/MS, we detected dynamic changes of histone H3 lysine post-translational modifications (PTMs). We firstly quantified the precise percentage of H3 modifications on different lysine sites during mouse and yeast meiosis, and found H3 acetylation and methylation were dramatically changed. To further study the potential functions of H3 acetylation and methylation in meiosis, we performed histone H3 lysine mutant screening in yeast, and found that yeast strains lacking H3K18 acetylation (H3K18ac) failed to initiate meiosis due to insufficient IME1 expression. Further studies showed that the absence of H3K18ac impaired respiration, leading to the reduction of Rim101p, which further upregulated a negative regulator of IME1 transcription, Smp1p. Together, our studies reveal a novel meiosis initiation pathway mediated by histone H3 modifications. Frontiers Media S.A. 2021-04-01 /pmc/articles/PMC8047140/ /pubmed/33869198 http://dx.doi.org/10.3389/fcell.2021.646214 Text en Copyright © 2021 Shi, Ma, Hua, Liu, Li, Yu and Liu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Shi, Jian Ma, Yanjie Hua, Hui Liu, Yujiao Li, Wei Yu, Hongxiu Liu, Chao Dynamic Histone H3 Modifications Regulate Meiosis Initiation via Respiration |
title | Dynamic Histone H3 Modifications Regulate Meiosis Initiation via Respiration |
title_full | Dynamic Histone H3 Modifications Regulate Meiosis Initiation via Respiration |
title_fullStr | Dynamic Histone H3 Modifications Regulate Meiosis Initiation via Respiration |
title_full_unstemmed | Dynamic Histone H3 Modifications Regulate Meiosis Initiation via Respiration |
title_short | Dynamic Histone H3 Modifications Regulate Meiosis Initiation via Respiration |
title_sort | dynamic histone h3 modifications regulate meiosis initiation via respiration |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047140/ https://www.ncbi.nlm.nih.gov/pubmed/33869198 http://dx.doi.org/10.3389/fcell.2021.646214 |
work_keys_str_mv | AT shijian dynamichistoneh3modificationsregulatemeiosisinitiationviarespiration AT mayanjie dynamichistoneh3modificationsregulatemeiosisinitiationviarespiration AT huahui dynamichistoneh3modificationsregulatemeiosisinitiationviarespiration AT liuyujiao dynamichistoneh3modificationsregulatemeiosisinitiationviarespiration AT liwei dynamichistoneh3modificationsregulatemeiosisinitiationviarespiration AT yuhongxiu dynamichistoneh3modificationsregulatemeiosisinitiationviarespiration AT liuchao dynamichistoneh3modificationsregulatemeiosisinitiationviarespiration |