Cargando…
Constructing Dynamic Brain Functional Networks via Hyper-Graph Manifold Regularization for Mild Cognitive Impairment Classification
Brain functional networks (BFNs) constructed via manifold regularization (MR) have emerged as a powerful tool in finding new biomarkers for brain disease diagnosis. However, they only describe the pair-wise relationship between two brain regions, and cannot describe the functional interaction betwee...
Autores principales: | Ji, Yixin, Zhang, Yutao, Shi, Haifeng, Jiao, Zhuqing, Wang, Shui-Hua, Wang, Chuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047143/ https://www.ncbi.nlm.nih.gov/pubmed/33867931 http://dx.doi.org/10.3389/fnins.2021.669345 |
Ejemplares similares
-
Constructing Dynamic Functional Networks via Weighted Regularization and Tensor Low-Rank Approximation for Early Mild Cognitive Impairment Classification
por: Jiao, Zhuqing, et al.
Publicado: (2021) -
Integration and Segregation of Dynamic Functional Connectivity States for Mild Cognitive Impairment Revealed by Graph Theory Indicators
por: Jiao, Zhuqing, et al.
Publicado: (2021) -
Semi-supervised multi-label classification using an extended graph-based manifold regularization
por: Li, Ding, et al.
Publicado: (2022) -
Identifying Disease-Gene Associations With Graph-Regularized Manifold Learning
por: Luo, Ping, et al.
Publicado: (2019) -
Multimodal Classification Framework Based on Hypergraph Latent Relation for End-Stage Renal Disease Associated with Mild Cognitive Impairment
por: Fu, Xidong, et al.
Publicado: (2023)