Cargando…
A random walk Monte Carlo simulation study of COVID-19-like infection spread
Recent analysis of early COVID-19 data from China showed that the number of confirmed cases followed a subexponential power-law increase, with a growth exponent of around 2.2 (Maier and Brockmann, 2020). The power-law behavior was attributed to a combination of effective containment and mitigation m...
Autores principales: | Triambak, S., Mahapatra, D.P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047309/ https://www.ncbi.nlm.nih.gov/pubmed/33875903 http://dx.doi.org/10.1016/j.physa.2021.126014 |
Ejemplares similares
-
Towards predicting COVID-19 infection waves: A random-walk Monte Carlo simulation approach
por: Mahapatra, D.P., et al.
Publicado: (2022) -
Novel approach for Monte Carlo simulation of the new COVID-19 spread dynamics
por: Maltezos, Stavros, et al.
Publicado: (2021) -
Plausible explanation for the third COVID-19 wave in India and its implications
por: Triambak, S., et al.
Publicado: (2023) -
A novel Monte Carlo simulation procedure for modelling COVID-19 spread over time
por: Xie, Gang
Publicado: (2020) -
A new logistic growth model applied to COVID-19 fatality data
por: Triambak, S., et al.
Publicado: (2021)