Cargando…

Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency

In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular c...

Descripción completa

Detalles Bibliográficos
Autores principales: Lackner, Andreas, Sehlke, Robert, Garmhausen, Marius, Giuseppe Stirparo, Giuliano, Huth, Michelle, Titz‐Teixeira, Fabian, van der Lelij, Petra, Ramesmayer, Julia, Thomas, Henry F, Ralser, Meryem, Santini, Laura, Galimberti, Elena, Sarov, Mihail, Stewart, A Francis, Smith, Austin, Beyer, Andreas, Leeb, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047444/
https://www.ncbi.nlm.nih.gov/pubmed/33687089
http://dx.doi.org/10.15252/embj.2020105776
_version_ 1783679040575504384
author Lackner, Andreas
Sehlke, Robert
Garmhausen, Marius
Giuseppe Stirparo, Giuliano
Huth, Michelle
Titz‐Teixeira, Fabian
van der Lelij, Petra
Ramesmayer, Julia
Thomas, Henry F
Ralser, Meryem
Santini, Laura
Galimberti, Elena
Sarov, Mihail
Stewart, A Francis
Smith, Austin
Beyer, Andreas
Leeb, Martin
author_facet Lackner, Andreas
Sehlke, Robert
Garmhausen, Marius
Giuseppe Stirparo, Giuliano
Huth, Michelle
Titz‐Teixeira, Fabian
van der Lelij, Petra
Ramesmayer, Julia
Thomas, Henry F
Ralser, Meryem
Santini, Laura
Galimberti, Elena
Sarov, Mihail
Stewart, A Francis
Smith, Austin
Beyer, Andreas
Leeb, Martin
author_sort Lackner, Andreas
collection PubMed
description In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large‐scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre‐ to post‐implantation epiblast in utero. We identified 496 naïve state‐associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.
format Online
Article
Text
id pubmed-8047444
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-80474442021-04-16 Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency Lackner, Andreas Sehlke, Robert Garmhausen, Marius Giuseppe Stirparo, Giuliano Huth, Michelle Titz‐Teixeira, Fabian van der Lelij, Petra Ramesmayer, Julia Thomas, Henry F Ralser, Meryem Santini, Laura Galimberti, Elena Sarov, Mihail Stewart, A Francis Smith, Austin Beyer, Andreas Leeb, Martin EMBO J Resource In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large‐scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre‐ to post‐implantation epiblast in utero. We identified 496 naïve state‐associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition. John Wiley and Sons Inc. 2021-03-09 2021-04-15 /pmc/articles/PMC8047444/ /pubmed/33687089 http://dx.doi.org/10.15252/embj.2020105776 Text en © 2021 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Resource
Lackner, Andreas
Sehlke, Robert
Garmhausen, Marius
Giuseppe Stirparo, Giuliano
Huth, Michelle
Titz‐Teixeira, Fabian
van der Lelij, Petra
Ramesmayer, Julia
Thomas, Henry F
Ralser, Meryem
Santini, Laura
Galimberti, Elena
Sarov, Mihail
Stewart, A Francis
Smith, Austin
Beyer, Andreas
Leeb, Martin
Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency
title Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency
title_full Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency
title_fullStr Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency
title_full_unstemmed Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency
title_short Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency
title_sort cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047444/
https://www.ncbi.nlm.nih.gov/pubmed/33687089
http://dx.doi.org/10.15252/embj.2020105776
work_keys_str_mv AT lacknerandreas cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT sehlkerobert cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT garmhausenmarius cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT giuseppestirparogiuliano cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT huthmichelle cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT titzteixeirafabian cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT vanderlelijpetra cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT ramesmayerjulia cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT thomashenryf cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT ralsermeryem cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT santinilaura cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT galimbertielena cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT sarovmihail cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT stewartafrancis cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT smithaustin cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT beyerandreas cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency
AT leebmartin cooperativegeneticnetworksdriveembryonicstemcelltransitionfromnaivetoformativepluripotency