Cargando…
circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis
Background: Atherosclerosis (AS) is a typical inflammatory vascular disease. Many reports corroborated that circular RNAs (circRNAs) is involved in AS progression. However, the potential function and possible mechanism of circ_0003204 in AS progression remain indistinct. Methods: Expression level an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047481/ https://www.ncbi.nlm.nih.gov/pubmed/33869307 http://dx.doi.org/10.3389/fcvm.2021.646832 |
_version_ | 1783679048274149376 |
---|---|
author | Wan, Huan You, Ting Luo, Wei |
author_facet | Wan, Huan You, Ting Luo, Wei |
author_sort | Wan, Huan |
collection | PubMed |
description | Background: Atherosclerosis (AS) is a typical inflammatory vascular disease. Many reports corroborated that circular RNAs (circRNAs) is involved in AS progression. However, the potential function and possible mechanism of circ_0003204 in AS progression remain indistinct. Methods: Expression level analysis was performed using qRT-PCR and western blot. Cell viability and apoptosis were determined using Cell Counting Kit-8 (CCK-8), flow cytometry, and western blot assays. The status of oxidative stress and inflammation was determined via commercial detection kits and ELISA assay, respectively. The binding relationship was verified via dual-luciferase reporter and RNA immunoprecipitation assays. Results: ox-LDL increased circ_0003204 and HDAC9 levels and decreased miR-942-5p level. Silencing of circ_0003204 enhanced cell viability and inhibited cell apoptosis, oxidative stress and inflammation in ox-LDL-disposed HUVECs. In addition, circ_0003204 targeted miR-942-5p to regulate ox-LDL-resulted HUVECs injury. Also, miR-942-5p affected ox-LDL-triggered HUVECs injury by targeting HDAC9. Furthermore, circ_0003204 elevated HDAC9 expression via decoying miR-942-5p. Conclusion: circ_0003204 aggravated ox-LDL-induced HUVECs damage via modulating miR-942-5p/HDAC9 pathway. |
format | Online Article Text |
id | pubmed-8047481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80474812021-04-16 circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis Wan, Huan You, Ting Luo, Wei Front Cardiovasc Med Cardiovascular Medicine Background: Atherosclerosis (AS) is a typical inflammatory vascular disease. Many reports corroborated that circular RNAs (circRNAs) is involved in AS progression. However, the potential function and possible mechanism of circ_0003204 in AS progression remain indistinct. Methods: Expression level analysis was performed using qRT-PCR and western blot. Cell viability and apoptosis were determined using Cell Counting Kit-8 (CCK-8), flow cytometry, and western blot assays. The status of oxidative stress and inflammation was determined via commercial detection kits and ELISA assay, respectively. The binding relationship was verified via dual-luciferase reporter and RNA immunoprecipitation assays. Results: ox-LDL increased circ_0003204 and HDAC9 levels and decreased miR-942-5p level. Silencing of circ_0003204 enhanced cell viability and inhibited cell apoptosis, oxidative stress and inflammation in ox-LDL-disposed HUVECs. In addition, circ_0003204 targeted miR-942-5p to regulate ox-LDL-resulted HUVECs injury. Also, miR-942-5p affected ox-LDL-triggered HUVECs injury by targeting HDAC9. Furthermore, circ_0003204 elevated HDAC9 expression via decoying miR-942-5p. Conclusion: circ_0003204 aggravated ox-LDL-induced HUVECs damage via modulating miR-942-5p/HDAC9 pathway. Frontiers Media S.A. 2021-04-01 /pmc/articles/PMC8047481/ /pubmed/33869307 http://dx.doi.org/10.3389/fcvm.2021.646832 Text en Copyright © 2021 Wan, You and Luo. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cardiovascular Medicine Wan, Huan You, Ting Luo, Wei circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis |
title | circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis |
title_full | circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis |
title_fullStr | circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis |
title_full_unstemmed | circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis |
title_short | circ_0003204 Regulates Cell Growth, Oxidative Stress, and Inflammation in ox-LDL-Induced Vascular Endothelial Cells via Regulating miR-942-5p/HDAC9 Axis |
title_sort | circ_0003204 regulates cell growth, oxidative stress, and inflammation in ox-ldl-induced vascular endothelial cells via regulating mir-942-5p/hdac9 axis |
topic | Cardiovascular Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047481/ https://www.ncbi.nlm.nih.gov/pubmed/33869307 http://dx.doi.org/10.3389/fcvm.2021.646832 |
work_keys_str_mv | AT wanhuan circ0003204regulatescellgrowthoxidativestressandinflammationinoxldlinducedvascularendothelialcellsviaregulatingmir9425phdac9axis AT youting circ0003204regulatescellgrowthoxidativestressandinflammationinoxldlinducedvascularendothelialcellsviaregulatingmir9425phdac9axis AT luowei circ0003204regulatescellgrowthoxidativestressandinflammationinoxldlinducedvascularendothelialcellsviaregulatingmir9425phdac9axis |