Cargando…

Valorization of Bark from Short Rotation Trees by Temperature-Programmed Slow Pyrolysis

[Image: see text] The tree bark represents an abundant but currently underutilized forest biomass side stream. In this work, temperature-programmed slow pyrolysis with fractional condensation was used for thermochemical conversion of the bark obtained from three short rotation tree species, aspen, g...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Qing, Mäkinen, Marko, Haapala, Antti, Jänis, Janne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047738/
https://www.ncbi.nlm.nih.gov/pubmed/33869957
http://dx.doi.org/10.1021/acsomega.1c00434
Descripción
Sumario:[Image: see text] The tree bark represents an abundant but currently underutilized forest biomass side stream. In this work, temperature-programmed slow pyrolysis with fractional condensation was used for thermochemical conversion of the bark obtained from three short rotation tree species, aspen, goat willow, and rowan. Heating was performed in three stages, drying (135 °C), torrefaction (275 °C), and pyrolysis (350 °C), and the resulting vapors were condensed at 120, 70, and 5 °C, producing nine liquid fractions. An additional fraction was collected in the pyrolysis stage at 0 °C. The obtained liquid fractions were characterized in terms of their yields and bulk chemistry (i.e., CHNOS content, water content, pH, and total acid number) as well as their molecular level chemistry by high-resolution mass spectrometry. The highest liquid yields were obtained for the fractions condensed at 70 °C. The water content varied considerably, being the highest for the drying fractions (>96%) and the lowest for the pyrolysis fractions obtained at 120 °C (0.1–2%). Considerable compositional differences were observed between the liquid fractions. While the drying fractions contained mostly some dissolved phenolics, the torrefaction fractions contained more sugaric compounds. In contrast, the pyrolysis fractions were enriched lipids (e.g., suberinic fatty acids and their derivatives) and alicyclic/aromatic hydrocarbons. These fractions could be further refined into different platforms and/or specialty chemicals. Thus, slow pyrolysis with fractional condensation offers a potential route for the valorization of tree bark residues from forest industry.