Cargando…

Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling

Transcranial brain stimulation (TBS) has been established as a method for modulating and mapping the function of the human brain, and as a potential treatment tool in several brain disorders. Typically, the stimulation is applied using a one-size-fits-all approach with predetermined locations for th...

Descripción completa

Detalles Bibliográficos
Autores principales: Puonti, Oula, Van Leemput, Koen, Saturnino, Guilherme B., Siebner, Hartwig R., Madsen, Kristoffer H., Thielscher, Axel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048089/
https://www.ncbi.nlm.nih.gov/pubmed/32534963
http://dx.doi.org/10.1016/j.neuroimage.2020.117044
_version_ 1783679169531478016
author Puonti, Oula
Van Leemput, Koen
Saturnino, Guilherme B.
Siebner, Hartwig R.
Madsen, Kristoffer H.
Thielscher, Axel
author_facet Puonti, Oula
Van Leemput, Koen
Saturnino, Guilherme B.
Siebner, Hartwig R.
Madsen, Kristoffer H.
Thielscher, Axel
author_sort Puonti, Oula
collection PubMed
description Transcranial brain stimulation (TBS) has been established as a method for modulating and mapping the function of the human brain, and as a potential treatment tool in several brain disorders. Typically, the stimulation is applied using a one-size-fits-all approach with predetermined locations for the electrodes, in electric stimulation (TES), or the coil, in magnetic stimulation (TMS), which disregards anatomical variability between individuals. However, the induced electric field distribution in the head largely depends on anatomical features implying the need for individually tailored stimulation protocols for focal dosing. This requires detailed models of the individual head anatomy, combined with electric field simulations, to find an optimal stimulation protocol for a given cortical target. Considering the anatomical and functional complexity of different brain disorders and pathologies, it is crucial to account for the anatomical variability in order to translate TBS from a research tool into a viable option for treatment. In this article we present a new method, called CHARM, for automated segmentation of fifteen different head tissues from magnetic resonance (MR) scans. The new method compares favorably to two freely available software tools on a five-tissue segmentation task, while obtaining reasonable segmentation accuracy over all fifteen tissues. The method automatically adapts to variability in the input scans and can thus be directly applied to clinical or research scans acquired with different scanners, sequences or settings. We show that an increase in automated segmentation accuracy results in a lower relative error in electric field simulations when compared to anatomical head models constructed from reference segmentations. However, also the improved segmentations and, by implication, the electric field simulations are affected by systematic artifacts in the input MR scans. As long as the artifacts are unaccounted for, this can lead to local simulation differences up to 30% of the peak field strength on reference simulations. Finally, we exemplarily demonstrate the effect of including all fifteen tissue classes in the field simulations against the standard approach of using only five tissue classes and show that for specific stimulation configurations the local differences can reach 10% of the peak field strength.
format Online
Article
Text
id pubmed-8048089
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-80480892021-04-15 Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling Puonti, Oula Van Leemput, Koen Saturnino, Guilherme B. Siebner, Hartwig R. Madsen, Kristoffer H. Thielscher, Axel Neuroimage Article Transcranial brain stimulation (TBS) has been established as a method for modulating and mapping the function of the human brain, and as a potential treatment tool in several brain disorders. Typically, the stimulation is applied using a one-size-fits-all approach with predetermined locations for the electrodes, in electric stimulation (TES), or the coil, in magnetic stimulation (TMS), which disregards anatomical variability between individuals. However, the induced electric field distribution in the head largely depends on anatomical features implying the need for individually tailored stimulation protocols for focal dosing. This requires detailed models of the individual head anatomy, combined with electric field simulations, to find an optimal stimulation protocol for a given cortical target. Considering the anatomical and functional complexity of different brain disorders and pathologies, it is crucial to account for the anatomical variability in order to translate TBS from a research tool into a viable option for treatment. In this article we present a new method, called CHARM, for automated segmentation of fifteen different head tissues from magnetic resonance (MR) scans. The new method compares favorably to two freely available software tools on a five-tissue segmentation task, while obtaining reasonable segmentation accuracy over all fifteen tissues. The method automatically adapts to variability in the input scans and can thus be directly applied to clinical or research scans acquired with different scanners, sequences or settings. We show that an increase in automated segmentation accuracy results in a lower relative error in electric field simulations when compared to anatomical head models constructed from reference segmentations. However, also the improved segmentations and, by implication, the electric field simulations are affected by systematic artifacts in the input MR scans. As long as the artifacts are unaccounted for, this can lead to local simulation differences up to 30% of the peak field strength on reference simulations. Finally, we exemplarily demonstrate the effect of including all fifteen tissue classes in the field simulations against the standard approach of using only five tissue classes and show that for specific stimulation configurations the local differences can reach 10% of the peak field strength. 2020-06-11 2020-10-01 /pmc/articles/PMC8048089/ /pubmed/32534963 http://dx.doi.org/10.1016/j.neuroimage.2020.117044 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Puonti, Oula
Van Leemput, Koen
Saturnino, Guilherme B.
Siebner, Hartwig R.
Madsen, Kristoffer H.
Thielscher, Axel
Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling
title Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling
title_full Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling
title_fullStr Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling
title_full_unstemmed Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling
title_short Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling
title_sort accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048089/
https://www.ncbi.nlm.nih.gov/pubmed/32534963
http://dx.doi.org/10.1016/j.neuroimage.2020.117044
work_keys_str_mv AT puontioula accurateandrobustwholeheadsegmentationfrommagneticresonanceimagesforindividualizedheadmodeling
AT vanleemputkoen accurateandrobustwholeheadsegmentationfrommagneticresonanceimagesforindividualizedheadmodeling
AT saturninoguilhermeb accurateandrobustwholeheadsegmentationfrommagneticresonanceimagesforindividualizedheadmodeling
AT siebnerhartwigr accurateandrobustwholeheadsegmentationfrommagneticresonanceimagesforindividualizedheadmodeling
AT madsenkristofferh accurateandrobustwholeheadsegmentationfrommagneticresonanceimagesforindividualizedheadmodeling
AT thielscheraxel accurateandrobustwholeheadsegmentationfrommagneticresonanceimagesforindividualizedheadmodeling