Cargando…
Embedding, aligning and reconstructing clinical notes to explore sepsis
OBJECTIVE: Our goal was to research and develop exploratory analysis tools for clinical notes, which now are underrepresented to limit the diversity of data insights on medically relevant applications. RESULTS: We characterize how exploratory analysis can affect representation learning on clinical n...
Autores principales: | Zhu, Xudong, Plasek, Joseph M., Tang, Chunlei, Al-Assad, Wasim, Zhang, Zhikun, Xiong, Yun, Wang, Liqin, Yerneni, Sharmitha, Ortega, Carlos, Kang, Min-Jeoung, Zhou, Li, Bates, David W., Dykes, Patricia C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048212/ https://www.ncbi.nlm.nih.gov/pubmed/33853664 http://dx.doi.org/10.1186/s13104-021-05529-4 |
Ejemplares similares
-
A temporal visualization of chronic obstructive pulmonary disease progression using deep learning and unstructured clinical notes
por: Tang, Chunlei, et al.
Publicado: (2019) -
Retraction Note: Melting of Pb Nanocrystals Embedded in Al, Si, and Cu Matrices
por: Wang, Huan, et al.
Publicado: (2020) -
Rethinking Data Sharing at the Dawn of a Health Data Economy: A Viewpoint
por: Tang, Chunlei, et al.
Publicado: (2018) -
SANS serif: alignment-free, whole-genome-based phylogenetic reconstruction
por: Rempel, Andreas, et al.
Publicado: (2021) -
Using an optimized generative model to infer the progression of complications in type 2 diabetes patients
por: Wang, Xiaoxia, et al.
Publicado: (2022)