Cargando…
Antimicrobial resistance clusters in commensal Escherichia coli from livestock
To combat antimicrobial resistance (AMR), policymakers need an overview of evolution and trends of AMR in relevant animal reservoirs, and livestock is monitored by susceptibility testing of sentinel organisms such as commensal E. coli. Such monitoring data are often vast and complex and generates a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048968/ https://www.ncbi.nlm.nih.gov/pubmed/33455079 http://dx.doi.org/10.1111/zph.12805 |
Sumario: | To combat antimicrobial resistance (AMR), policymakers need an overview of evolution and trends of AMR in relevant animal reservoirs, and livestock is monitored by susceptibility testing of sentinel organisms such as commensal E. coli. Such monitoring data are often vast and complex and generates a need for outcome indicators that summarize AMR for multiple antimicrobial classes. Model‐based clustering is a data‐driven approach that can help to objectively summarize AMR in animal reservoirs. In this study, a model‐based cluster analysis was carried out on a dataset of minimum inhibitory concentrations (MIC), recoded to binary variables, for 10 antimicrobials of commensal E. coli isolates (N = 12,986) derived from four animal species (broilers, pigs, veal calves and dairy cows) in Dutch AMR monitoring, 2007–2018. This analysis revealed four clusters in commensal E. coli in livestock containing 201 unique resistance combinations. The prevalence of these combinations and clusters differs between animal species. Our results indicate that to monitor different animal populations, more than one indicator for multidrug resistance seems necessary. We show how these clusters summarize multidrug resistance and have potential as monitoring outcome indicators to benchmark and prioritize AMR problems in livestock. |
---|