Cargando…

Model of theta frequency perturbations and contextual fear memory

Theta oscillations in the hippocampal local field potential (LFP) appear during translational movement and arousal, modulate the activity of principal cells, and are associated with spatial cognition and episodic memory function. All known anxiolytics slightly but consistently reduce hippocampal the...

Descripción completa

Detalles Bibliográficos
Autores principales: Castegnetti, Giuseppe, Bush, Daniel, Bach, Dominik R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049035/
https://www.ncbi.nlm.nih.gov/pubmed/33534196
http://dx.doi.org/10.1002/hipo.23307
Descripción
Sumario:Theta oscillations in the hippocampal local field potential (LFP) appear during translational movement and arousal, modulate the activity of principal cells, and are associated with spatial cognition and episodic memory function. All known anxiolytics slightly but consistently reduce hippocampal theta frequency. However, whether this electrophysiological effect is mechanistically related to the decreased behavioral expression of anxiety is currently unclear. Here, we propose that a reduction in theta frequency affects synaptic plasticity and mnemonic function and that this can explain the reduction in anxiety behavior. We test this hypothesis in a biophysical model of contextual fear conditioning. First, we confirm that our model reproduces previous empirical results regarding the dependence of synaptic plasticity on presynaptic firing rate. Next, we investigate how theta frequency during contextual conditioning impacts learning. These simulations demonstrate that learned associations between threat and context are attenuated when learning takes place under reduced theta frequency. Additionally, our simulations demonstrate that learned associations result in increased theta activity in the amygdala, consistent with empirical data. In summary, we propose a mechanism that can account for the behavioral effect of anxiolytics by impairing the integration of threat attributes of an environment into the cognitive map due to reduced synaptic potentiation.