Cargando…
A Gain‐of‐Function Variant in Dopamine D2 Receptor and Progressive Chorea and Dystonia Phenotype
BACKGROUND: We describe a 4‐generation Dutch pedigree with a unique dominantly inherited clinical phenotype of a combined progressive chorea and cervical dystonia carrying a novel heterozygous dopamine D2 receptor (DRD2) variant. OBJECTIVES: The objective of this study was to identify the genetic ca...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049080/ https://www.ncbi.nlm.nih.gov/pubmed/33200438 http://dx.doi.org/10.1002/mds.28385 |
Sumario: | BACKGROUND: We describe a 4‐generation Dutch pedigree with a unique dominantly inherited clinical phenotype of a combined progressive chorea and cervical dystonia carrying a novel heterozygous dopamine D2 receptor (DRD2) variant. OBJECTIVES: The objective of this study was to identify the genetic cause of the disease and to further investigate the functional consequences of the genetic variant. METHODS: After detailed clinical and neurological examination, whole‐exome sequencing was performed. Because a novel variant in the DRD2 gene was found as the likely causative gene defect in our pedigree, we sequenced the DRD2 gene in a cohort of 121 Huntington‐like cases with unknown genetic cause (Germany). Moreover, functional characterization of the DRD2 variant included arrestin recruitment, G protein activation, and G protein‐mediated inhibition of adenylyl cyclase determined in a cell model, and G protein‐regulated inward‐rectifying potassium channels measured in midbrain slices of mice. RESULT: We identified a novel heterozygous variant c.634A > T, p.Ile212Phe in exon 5 of DRD2 that cosegregated with the clinical phenotype. Screening of the German cohort did not reveal additional putative disease‐causing variants. We demonstrated that the D2(S/L)‐I(212)F receptor exhibited increased agonist potency and constitutive activation of G proteins in human embryonic kidney 239 cells as well as significantly reduced arrestin3 recruitment. We further showed that the D2(S)‐I(212)F receptor exhibited aberrant receptor function in mouse midbrain slices. CONCLUSIONS: Our results support an association between the novel p.Ile212Phe variant in DRD2, its modified D2 receptor activity, and the hyperkinetic movement disorder reported in the 4‐generation pedigree. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. |
---|