Cargando…

Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain

In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving...

Descripción completa

Detalles Bibliográficos
Autores principales: Tabares-Soto, Reinel, Arteaga-Arteaga, Harold Brayan, Mora-Rubio, Alejandro, Bravo-Ortíz, Mario Alejandro, Arias-Garzón, Daniel, Alzate Grisales, Jesús Alejandro, Burbano Jacome, Alejandro, Orozco-Arias, Simon, Isaza, Gustavo, Ramos Pollan, Raul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049123/
https://www.ncbi.nlm.nih.gov/pubmed/33954236
http://dx.doi.org/10.7717/peerj-cs.451
_version_ 1783679367766867968
author Tabares-Soto, Reinel
Arteaga-Arteaga, Harold Brayan
Mora-Rubio, Alejandro
Bravo-Ortíz, Mario Alejandro
Arias-Garzón, Daniel
Alzate Grisales, Jesús Alejandro
Burbano Jacome, Alejandro
Orozco-Arias, Simon
Isaza, Gustavo
Ramos Pollan, Raul
author_facet Tabares-Soto, Reinel
Arteaga-Arteaga, Harold Brayan
Mora-Rubio, Alejandro
Bravo-Ortíz, Mario Alejandro
Arias-Garzón, Daniel
Alzate Grisales, Jesús Alejandro
Burbano Jacome, Alejandro
Orozco-Arias, Simon
Isaza, Gustavo
Ramos Pollan, Raul
author_sort Tabares-Soto, Reinel
collection PubMed
description In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images’ detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks’ stability.
format Online
Article
Text
id pubmed-8049123
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-80491232021-05-04 Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain Tabares-Soto, Reinel Arteaga-Arteaga, Harold Brayan Mora-Rubio, Alejandro Bravo-Ortíz, Mario Alejandro Arias-Garzón, Daniel Alzate Grisales, Jesús Alejandro Burbano Jacome, Alejandro Orozco-Arias, Simon Isaza, Gustavo Ramos Pollan, Raul PeerJ Comput Sci Artificial Intelligence In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images’ detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks’ stability. PeerJ Inc. 2021-04-09 /pmc/articles/PMC8049123/ /pubmed/33954236 http://dx.doi.org/10.7717/peerj-cs.451 Text en © 2021 Tabares-Soto et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
spellingShingle Artificial Intelligence
Tabares-Soto, Reinel
Arteaga-Arteaga, Harold Brayan
Mora-Rubio, Alejandro
Bravo-Ortíz, Mario Alejandro
Arias-Garzón, Daniel
Alzate Grisales, Jesús Alejandro
Burbano Jacome, Alejandro
Orozco-Arias, Simon
Isaza, Gustavo
Ramos Pollan, Raul
Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
title Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
title_full Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
title_fullStr Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
title_full_unstemmed Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
title_short Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
title_sort strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
topic Artificial Intelligence
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049123/
https://www.ncbi.nlm.nih.gov/pubmed/33954236
http://dx.doi.org/10.7717/peerj-cs.451
work_keys_str_mv AT tabaressotoreinel strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain
AT arteagaarteagaharoldbrayan strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain
AT morarubioalejandro strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain
AT bravoortizmarioalejandro strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain
AT ariasgarzondaniel strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain
AT alzategrisalesjesusalejandro strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain
AT burbanojacomealejandro strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain
AT orozcoariassimon strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain
AT isazagustavo strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain
AT ramospollanraul strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain