Cargando…
Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain
In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049123/ https://www.ncbi.nlm.nih.gov/pubmed/33954236 http://dx.doi.org/10.7717/peerj-cs.451 |
_version_ | 1783679367766867968 |
---|---|
author | Tabares-Soto, Reinel Arteaga-Arteaga, Harold Brayan Mora-Rubio, Alejandro Bravo-Ortíz, Mario Alejandro Arias-Garzón, Daniel Alzate Grisales, Jesús Alejandro Burbano Jacome, Alejandro Orozco-Arias, Simon Isaza, Gustavo Ramos Pollan, Raul |
author_facet | Tabares-Soto, Reinel Arteaga-Arteaga, Harold Brayan Mora-Rubio, Alejandro Bravo-Ortíz, Mario Alejandro Arias-Garzón, Daniel Alzate Grisales, Jesús Alejandro Burbano Jacome, Alejandro Orozco-Arias, Simon Isaza, Gustavo Ramos Pollan, Raul |
author_sort | Tabares-Soto, Reinel |
collection | PubMed |
description | In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images’ detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks’ stability. |
format | Online Article Text |
id | pubmed-8049123 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80491232021-05-04 Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain Tabares-Soto, Reinel Arteaga-Arteaga, Harold Brayan Mora-Rubio, Alejandro Bravo-Ortíz, Mario Alejandro Arias-Garzón, Daniel Alzate Grisales, Jesús Alejandro Burbano Jacome, Alejandro Orozco-Arias, Simon Isaza, Gustavo Ramos Pollan, Raul PeerJ Comput Sci Artificial Intelligence In recent years, Deep Learning techniques applied to steganalysis have surpassed the traditional two-stage approach by unifying feature extraction and classification in a single model, the Convolutional Neural Network (CNN). Several CNN architectures have been proposed to solve this task, improving steganographic images’ detection accuracy, but it is unclear which computational elements are relevant. Here we present a strategy to improve accuracy, convergence, and stability during training. The strategy involves a preprocessing stage with Spatial Rich Models filters, Spatial Dropout, Absolute Value layer, and Batch Normalization. Using the strategy improves the performance of three steganalysis CNNs and two image classification CNNs by enhancing the accuracy from 2% up to 10% while reducing the training time to less than 6 h and improving the networks’ stability. PeerJ Inc. 2021-04-09 /pmc/articles/PMC8049123/ /pubmed/33954236 http://dx.doi.org/10.7717/peerj-cs.451 Text en © 2021 Tabares-Soto et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Artificial Intelligence Tabares-Soto, Reinel Arteaga-Arteaga, Harold Brayan Mora-Rubio, Alejandro Bravo-Ortíz, Mario Alejandro Arias-Garzón, Daniel Alzate Grisales, Jesús Alejandro Burbano Jacome, Alejandro Orozco-Arias, Simon Isaza, Gustavo Ramos Pollan, Raul Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain |
title | Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain |
title_full | Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain |
title_fullStr | Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain |
title_full_unstemmed | Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain |
title_short | Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain |
title_sort | strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain |
topic | Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049123/ https://www.ncbi.nlm.nih.gov/pubmed/33954236 http://dx.doi.org/10.7717/peerj-cs.451 |
work_keys_str_mv | AT tabaressotoreinel strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain AT arteagaarteagaharoldbrayan strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain AT morarubioalejandro strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain AT bravoortizmarioalejandro strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain AT ariasgarzondaniel strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain AT alzategrisalesjesusalejandro strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain AT burbanojacomealejandro strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain AT orozcoariassimon strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain AT isazagustavo strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain AT ramospollanraul strategytoimprovetheaccuracyofconvolutionalneuralnetworkarchitecturesappliedtodigitalimagesteganalysisinthespatialdomain |