Cargando…
Syntactic- and morphology-based text augmentation framework for Arabic sentiment analysis
Arabic language is a challenging language for automatic processing. This is due to several intrinsic reasons such as Arabic multi-dialects, ambiguous syntax, syntactical flexibility and diacritics. Machine learning and deep learning frameworks require big datasets for training to ensure accurate pre...
Autores principales: | Duwairi, Rehab, Abushaqra, Ftoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049132/ https://www.ncbi.nlm.nih.gov/pubmed/33954245 http://dx.doi.org/10.7717/peerj-cs.469 |
Ejemplares similares
-
Generative adversarial network based adaptive data augmentation for handwritten Arabic text recognition
por: Eltay, Mohamed, et al.
Publicado: (2022) -
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
Attention enhanced capsule network for text classification by encoding syntactic dependency trees with graph convolutional neural network
por: Jia, Xudong, et al.
Publicado: (2022) -
Effect of stemming on text similarity for Arabic language at sentence level
por: Alhawarat, Mohammad O., et al.
Publicado: (2021) -
Persian sentiment analysis of an online store independent of pre-processing using convolutional neural network with fastText embeddings
por: Shumaly, Sajjad, et al.
Publicado: (2021)