Cargando…

Delay minimization based uplink resource allocation for device-to-device communications considering mmWave propagation

This paper addresses the resource allocation problem in multi-sharing uplink for device-to-device (D2D) communication, one aspect of 5G communication networks. The main advantage and motivation in relation to the use of D2D communication is the significant improvement in the spectral efficiency of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferreira, Marcus V.G., Vieira, Flávio Henrique Teles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049136/
https://www.ncbi.nlm.nih.gov/pubmed/33954240
http://dx.doi.org/10.7717/peerj-cs.462
Descripción
Sumario:This paper addresses the resource allocation problem in multi-sharing uplink for device-to-device (D2D) communication, one aspect of 5G communication networks. The main advantage and motivation in relation to the use of D2D communication is the significant improvement in the spectral efficiency of the system when exploiting the proximity of communication pairs and reusing idle resources of the network, mainly in the uplink mode, where there are more idle available resources. An approach is proposed for allocating resources to D2D and cellular user equipments (CUE) users in the uplink of a 5G based network which considers the estimation of delay bound value. The proposed algorithm considers minimization of total delay for users in the uplink and solves the problem by forming conflict graph and by finding the maximal weight independent set. For the user delay estimation, an approach is proposed that considers the multifractal traffic envelope process and service curve for the uplink. The performance of the algorithm is evaluated through computer simulations in comparison with those of other algorithms in the literature in terms of throughput, delay, fairness and computational complexity in a scenario with channel modeling that describes the propagation of millimeter waves at frequencies above 6 GHz. Simulation results show that the proposed allocation algorithm outperforms other algorithms in the literature, being highly efficient to 5G systems.