Cargando…
Can predicting COVID-19 mortality in a European cohort using only demographic and comorbidity data surpass age-based prediction: An externally validated study
OBJECTIVE: To establish whether one can build a mortality prediction model for COVID-19 patients based solely on demographics and comorbidity data that outperforms age alone. Such a model could be a precursor to implementing smart lockdowns and vaccine distribution strategies. METHODS: The training...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049248/ https://www.ncbi.nlm.nih.gov/pubmed/33857224 http://dx.doi.org/10.1371/journal.pone.0249920 |
_version_ | 1783679392345489408 |
---|---|
author | Chatterjee, Avishek Wu, Guangyao Primakov, Sergey Oberije, Cary Woodruff, Henry Kubben, Pieter Henry, Ronald Aries, Marcel J. H. Beudel, Martijn Noordzij, Peter G. Dormans, Tom Gritters van den Oever, Niels C. van den Bergh, Joop P. Wyers, Caroline E. Simsek, Suat Douma, Renée Reidinga, Auke C. de Kruif, Martijn D. Guiot, Julien Frix, Anne-Noelle Louis, Renaud Moutschen, Michel Lovinfosse, Pierre Lambin, Philippe |
author_facet | Chatterjee, Avishek Wu, Guangyao Primakov, Sergey Oberije, Cary Woodruff, Henry Kubben, Pieter Henry, Ronald Aries, Marcel J. H. Beudel, Martijn Noordzij, Peter G. Dormans, Tom Gritters van den Oever, Niels C. van den Bergh, Joop P. Wyers, Caroline E. Simsek, Suat Douma, Renée Reidinga, Auke C. de Kruif, Martijn D. Guiot, Julien Frix, Anne-Noelle Louis, Renaud Moutschen, Michel Lovinfosse, Pierre Lambin, Philippe |
author_sort | Chatterjee, Avishek |
collection | PubMed |
description | OBJECTIVE: To establish whether one can build a mortality prediction model for COVID-19 patients based solely on demographics and comorbidity data that outperforms age alone. Such a model could be a precursor to implementing smart lockdowns and vaccine distribution strategies. METHODS: The training cohort comprised 2337 COVID-19 inpatients from nine hospitals in The Netherlands. The clinical outcome was death within 21 days of being discharged. The features were derived from electronic health records collected during admission. Three feature selection methods were used: LASSO, univariate using a novel metric, and pairwise (age being half of each pair). 478 patients from Belgium were used to test the model. All modeling attempts were compared against an age-only model. RESULTS: In the training cohort, the mortality group’s median age was 77 years (interquartile range = 70–83), higher than the non-mortality group (median = 65, IQR = 55–75). The incidence of former/active smokers, male gender, hypertension, diabetes, dementia, cancer, chronic obstructive pulmonary disease, chronic cardiac disease, chronic neurological disease, and chronic kidney disease was higher in the mortality group. All stated differences were statistically significant after Bonferroni correction. LASSO selected eight features, novel univariate chose five, and pairwise chose none. No model was able to surpass an age-only model in the external validation set, where age had an AUC of 0.85 and a balanced accuracy of 0.77. CONCLUSION: When applied to an external validation set, we found that an age-only mortality model outperformed all modeling attempts (curated on www.covid19risk.ai) using three feature selection methods on 22 demographic and comorbid features. |
format | Online Article Text |
id | pubmed-8049248 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-80492482021-04-21 Can predicting COVID-19 mortality in a European cohort using only demographic and comorbidity data surpass age-based prediction: An externally validated study Chatterjee, Avishek Wu, Guangyao Primakov, Sergey Oberije, Cary Woodruff, Henry Kubben, Pieter Henry, Ronald Aries, Marcel J. H. Beudel, Martijn Noordzij, Peter G. Dormans, Tom Gritters van den Oever, Niels C. van den Bergh, Joop P. Wyers, Caroline E. Simsek, Suat Douma, Renée Reidinga, Auke C. de Kruif, Martijn D. Guiot, Julien Frix, Anne-Noelle Louis, Renaud Moutschen, Michel Lovinfosse, Pierre Lambin, Philippe PLoS One Research Article OBJECTIVE: To establish whether one can build a mortality prediction model for COVID-19 patients based solely on demographics and comorbidity data that outperforms age alone. Such a model could be a precursor to implementing smart lockdowns and vaccine distribution strategies. METHODS: The training cohort comprised 2337 COVID-19 inpatients from nine hospitals in The Netherlands. The clinical outcome was death within 21 days of being discharged. The features were derived from electronic health records collected during admission. Three feature selection methods were used: LASSO, univariate using a novel metric, and pairwise (age being half of each pair). 478 patients from Belgium were used to test the model. All modeling attempts were compared against an age-only model. RESULTS: In the training cohort, the mortality group’s median age was 77 years (interquartile range = 70–83), higher than the non-mortality group (median = 65, IQR = 55–75). The incidence of former/active smokers, male gender, hypertension, diabetes, dementia, cancer, chronic obstructive pulmonary disease, chronic cardiac disease, chronic neurological disease, and chronic kidney disease was higher in the mortality group. All stated differences were statistically significant after Bonferroni correction. LASSO selected eight features, novel univariate chose five, and pairwise chose none. No model was able to surpass an age-only model in the external validation set, where age had an AUC of 0.85 and a balanced accuracy of 0.77. CONCLUSION: When applied to an external validation set, we found that an age-only mortality model outperformed all modeling attempts (curated on www.covid19risk.ai) using three feature selection methods on 22 demographic and comorbid features. Public Library of Science 2021-04-15 /pmc/articles/PMC8049248/ /pubmed/33857224 http://dx.doi.org/10.1371/journal.pone.0249920 Text en © 2021 Chatterjee et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Chatterjee, Avishek Wu, Guangyao Primakov, Sergey Oberije, Cary Woodruff, Henry Kubben, Pieter Henry, Ronald Aries, Marcel J. H. Beudel, Martijn Noordzij, Peter G. Dormans, Tom Gritters van den Oever, Niels C. van den Bergh, Joop P. Wyers, Caroline E. Simsek, Suat Douma, Renée Reidinga, Auke C. de Kruif, Martijn D. Guiot, Julien Frix, Anne-Noelle Louis, Renaud Moutschen, Michel Lovinfosse, Pierre Lambin, Philippe Can predicting COVID-19 mortality in a European cohort using only demographic and comorbidity data surpass age-based prediction: An externally validated study |
title | Can predicting COVID-19 mortality in a European cohort using only demographic and comorbidity data surpass age-based prediction: An externally validated study |
title_full | Can predicting COVID-19 mortality in a European cohort using only demographic and comorbidity data surpass age-based prediction: An externally validated study |
title_fullStr | Can predicting COVID-19 mortality in a European cohort using only demographic and comorbidity data surpass age-based prediction: An externally validated study |
title_full_unstemmed | Can predicting COVID-19 mortality in a European cohort using only demographic and comorbidity data surpass age-based prediction: An externally validated study |
title_short | Can predicting COVID-19 mortality in a European cohort using only demographic and comorbidity data surpass age-based prediction: An externally validated study |
title_sort | can predicting covid-19 mortality in a european cohort using only demographic and comorbidity data surpass age-based prediction: an externally validated study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049248/ https://www.ncbi.nlm.nih.gov/pubmed/33857224 http://dx.doi.org/10.1371/journal.pone.0249920 |
work_keys_str_mv | AT chatterjeeavishek canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT wuguangyao canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT primakovsergey canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT oberijecary canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT woodruffhenry canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT kubbenpieter canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT henryronald canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT ariesmarceljh canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT beudelmartijn canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT noordzijpeterg canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT dormanstom canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT grittersvandenoevernielsc canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT vandenberghjoopp canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT wyerscarolinee canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT simseksuat canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT doumarenee canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT reidingaaukec canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT dekruifmartijnd canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT guiotjulien canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT frixannenoelle canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT louisrenaud canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT moutschenmichel canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT lovinfossepierre canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy AT lambinphilippe canpredictingcovid19mortalityinaeuropeancohortusingonlydemographicandcomorbiditydatasurpassagebasedpredictionanexternallyvalidatedstudy |