Cargando…
OptiMissP: A dashboard to assess missingness in proteomic data-independent acquisition mass spectrometry
BACKGROUND: Missing values are a key issue in the statistical analysis of proteomic data. Defining the strategy to address missing values is a complex task in each study, potentially affecting the quality of statistical analyses. RESULTS: We have developed OptiMissP, a dashboard to visually and qual...
Autores principales: | Arioli, Angelica, Dagliati, Arianna, Geary, Bethany, Peek, Niels, Kalra, Philip A., Whetton, Anthony D., Geifman, Nophar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049317/ https://www.ncbi.nlm.nih.gov/pubmed/33857200 http://dx.doi.org/10.1371/journal.pone.0249771 |
Ejemplares similares
-
The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination
por: McGurk, Kathryn A, et al.
Publicado: (2020) -
Sex and APOE genotype differences related to statin use in the aging population
por: Dagliati, Arianna, et al.
Publicado: (2021) -
Proteomic signature associated with chronic kidney disease (CKD) progression identified by data-independent acquisition mass spectrometry
por: Ramírez Medina, Carlos R., et al.
Publicado: (2023) -
Pride and prejudice – What can we learn from peer review?
por: Le Sueur, Helen, et al.
Publicado: (2020) -
Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools
por: Nicora, Giovanna, et al.
Publicado: (2020)