Cargando…
Experimental in-vitro investigation on Epi-Off-Crosslinking on porcine corneas
AIM: To evaluate quantitatively the effects of the Epi-Off-CXL irradiance dose on the stromal stiffening of pig corneas. SETTING: Laboratory of Biological structures (LaBS), Politecnico di Milano, Milano, Italy. METHODS: Inflation tests have been carried on 90 excised and de-epithelized pig corneas,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049322/ https://www.ncbi.nlm.nih.gov/pubmed/33857213 http://dx.doi.org/10.1371/journal.pone.0249949 |
Sumario: | AIM: To evaluate quantitatively the effects of the Epi-Off-CXL irradiance dose on the stromal stiffening of pig corneas. SETTING: Laboratory of Biological structures (LaBS), Politecnico di Milano, Milano, Italy. METHODS: Inflation tests have been carried on 90 excised and de-epithelized pig corneas, monitoring the change of configuration of the corneal dome at specific pressures. Test have been carried out twice on each cornea, once before and once after Epi-Off-CXL performed at a constant irradiance of 9 mW/cm(2) and variable UV-A exposure times. Corneas were grouped according to the exposure time (2.5, 5, 10, 15 and 20 min), proportional to the irradiation dose (1.35, 2.7, 5.4, 8.1, and 10.8 J/cm(2)). A theoretical model based on linearized shell theory has been used to estimate the increment of the corneal stiffness. RESULTS: The linearized shell theory allowed to establish a quantitative relation between the increment of the stiffness parameters and the irradiation dose. Relative to the pre-treatment values, in all experiments the post-treatment corneal stiffness revealed a pronounced increase. In general, the stiffness gain increased with the exposure time. No significant differences in stiffening was observed between tests conducted at 2.5, 5, and 10 min exposure. CONCLUSIONS: Qualitatively, the effectiveness of accelerated CXL treatments observed in pig corneas complies very well with in-vivo clinical results in humans, suggesting that experimental data in pigs can be very useful for the design of the procedure in humans. A larger irradiation dose provides a larger increment of the corneal stiffness. Due to the biological variability of the tissues, however, it is difficult to distinguish quantitatively the level of the reinforcement induced by accelerated protocols (low doses with < = 10 min exposure), less prone to induce damage in the corneal tissue. Therefore, the definition of personalized treatments must be related to the actual biomechanics of the cornea. |
---|