Cargando…
Complex pleiotropic genetic architecture of evolved heat stress and oxidative stress resistance in the nematode Caenorhabditis remanei
The adaptation of complex organisms to changing environments has been a central question in evolutionary quantitative genetics since its inception. The structure of the genotype–phenotype maps is critical because pleiotropic effects can generate widespread correlated responses to selection and poten...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049431/ https://www.ncbi.nlm.nih.gov/pubmed/33605401 http://dx.doi.org/10.1093/g3journal/jkab045 |
_version_ | 1783679424594444288 |
---|---|
author | O’Connor, Christine H Sikkink, Kristin L Nelson, Thomas C Fierst, Janna L Cresko, William A Phillips, Patrick C |
author_facet | O’Connor, Christine H Sikkink, Kristin L Nelson, Thomas C Fierst, Janna L Cresko, William A Phillips, Patrick C |
author_sort | O’Connor, Christine H |
collection | PubMed |
description | The adaptation of complex organisms to changing environments has been a central question in evolutionary quantitative genetics since its inception. The structure of the genotype–phenotype maps is critical because pleiotropic effects can generate widespread correlated responses to selection and potentially restrict the extent of evolutionary change. In this study, we use experimental evolution to dissect the genetic architecture of natural variation for acute heat stress and oxidative stress response in the nematode Caenorhabiditis remanei. Previous work in the classic model nematode Caenorhabiditis elegans has found that abiotic stress response is controlled by a handful of genes of major effect and that mutations in any one of these genes can have widespread pleiotropic effects on multiple stress response traits. Here, we find that acute heat stress response and acute oxidative response in C. remanei are polygenic, complex traits, with hundreds of genomic regions responding to selection. In contrast to expectation from mutation studies, we find that evolved acute heat stress and acute oxidative stress response for the most part display independent genetic bases. This lack of correlation is reflected at the levels of phenotype, gene expression, and in the genomic response to selection. Thus, while these findings support the general view that rapid adaptation can be generated by changes at hundreds to thousands of sites in the genome, the architecture of segregating variation is likely to be determined by the pleiotropic structure of the underlying genetic networks. |
format | Online Article Text |
id | pubmed-8049431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-80494312021-04-21 Complex pleiotropic genetic architecture of evolved heat stress and oxidative stress resistance in the nematode Caenorhabditis remanei O’Connor, Christine H Sikkink, Kristin L Nelson, Thomas C Fierst, Janna L Cresko, William A Phillips, Patrick C G3 (Bethesda) Investigation The adaptation of complex organisms to changing environments has been a central question in evolutionary quantitative genetics since its inception. The structure of the genotype–phenotype maps is critical because pleiotropic effects can generate widespread correlated responses to selection and potentially restrict the extent of evolutionary change. In this study, we use experimental evolution to dissect the genetic architecture of natural variation for acute heat stress and oxidative stress response in the nematode Caenorhabiditis remanei. Previous work in the classic model nematode Caenorhabiditis elegans has found that abiotic stress response is controlled by a handful of genes of major effect and that mutations in any one of these genes can have widespread pleiotropic effects on multiple stress response traits. Here, we find that acute heat stress response and acute oxidative response in C. remanei are polygenic, complex traits, with hundreds of genomic regions responding to selection. In contrast to expectation from mutation studies, we find that evolved acute heat stress and acute oxidative stress response for the most part display independent genetic bases. This lack of correlation is reflected at the levels of phenotype, gene expression, and in the genomic response to selection. Thus, while these findings support the general view that rapid adaptation can be generated by changes at hundreds to thousands of sites in the genome, the architecture of segregating variation is likely to be determined by the pleiotropic structure of the underlying genetic networks. Oxford University Press 2021-02-19 /pmc/articles/PMC8049431/ /pubmed/33605401 http://dx.doi.org/10.1093/g3journal/jkab045 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Investigation O’Connor, Christine H Sikkink, Kristin L Nelson, Thomas C Fierst, Janna L Cresko, William A Phillips, Patrick C Complex pleiotropic genetic architecture of evolved heat stress and oxidative stress resistance in the nematode Caenorhabditis remanei |
title | Complex pleiotropic genetic architecture of evolved heat stress and oxidative stress resistance in the nematode Caenorhabditis remanei |
title_full | Complex pleiotropic genetic architecture of evolved heat stress and oxidative stress resistance in the nematode Caenorhabditis remanei |
title_fullStr | Complex pleiotropic genetic architecture of evolved heat stress and oxidative stress resistance in the nematode Caenorhabditis remanei |
title_full_unstemmed | Complex pleiotropic genetic architecture of evolved heat stress and oxidative stress resistance in the nematode Caenorhabditis remanei |
title_short | Complex pleiotropic genetic architecture of evolved heat stress and oxidative stress resistance in the nematode Caenorhabditis remanei |
title_sort | complex pleiotropic genetic architecture of evolved heat stress and oxidative stress resistance in the nematode caenorhabditis remanei |
topic | Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049431/ https://www.ncbi.nlm.nih.gov/pubmed/33605401 http://dx.doi.org/10.1093/g3journal/jkab045 |
work_keys_str_mv | AT oconnorchristineh complexpleiotropicgeneticarchitectureofevolvedheatstressandoxidativestressresistanceinthenematodecaenorhabditisremanei AT sikkinkkristinl complexpleiotropicgeneticarchitectureofevolvedheatstressandoxidativestressresistanceinthenematodecaenorhabditisremanei AT nelsonthomasc complexpleiotropicgeneticarchitectureofevolvedheatstressandoxidativestressresistanceinthenematodecaenorhabditisremanei AT fierstjannal complexpleiotropicgeneticarchitectureofevolvedheatstressandoxidativestressresistanceinthenematodecaenorhabditisremanei AT creskowilliama complexpleiotropicgeneticarchitectureofevolvedheatstressandoxidativestressresistanceinthenematodecaenorhabditisremanei AT phillipspatrickc complexpleiotropicgeneticarchitectureofevolvedheatstressandoxidativestressresistanceinthenematodecaenorhabditisremanei |