Cargando…
The Enigma of Interspecific Plasmodesmata: Insight From Parasitic Plants
Parasitic plants live in intimate physical connection with other plants serving as their hosts. These host plants provide the inorganic and organic compounds that the parasites need for their propagation. The uptake of the macromolecular compounds happens through symplasmic connections in the form o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049502/ https://www.ncbi.nlm.nih.gov/pubmed/33868340 http://dx.doi.org/10.3389/fpls.2021.641924 |
_version_ | 1783679437264388096 |
---|---|
author | Fischer, Karsten Lachner, Lena Anna-Maria Olsen, Stian Mulisch, Maria Krause, Kirsten |
author_facet | Fischer, Karsten Lachner, Lena Anna-Maria Olsen, Stian Mulisch, Maria Krause, Kirsten |
author_sort | Fischer, Karsten |
collection | PubMed |
description | Parasitic plants live in intimate physical connection with other plants serving as their hosts. These host plants provide the inorganic and organic compounds that the parasites need for their propagation. The uptake of the macromolecular compounds happens through symplasmic connections in the form of plasmodesmata. In contrast to regular plasmodesmata, which connect genetically identical cells of an individual plant, the plasmodesmata that connect the cells of host and parasite join separate individuals belonging to different species and are therefore termed “interspecific”. The existence of such interspecific plasmodesmata was deduced either indirectly using molecular approaches or observed directly by ultrastructural analyses. Most of this evidence concerns shoot parasitic Cuscuta species and root parasitic Orobanchaceae, which can both infect a large range of phylogenetically distant hosts. The existence of an interspecific chimeric symplast is both striking and unique and, with exceptions being observed in closely related grafted plants, exist only in these parasitic relationships. Considering the recent technical advances and upcoming tools for analyzing parasitic plants, interspecific plasmodesmata in parasite/host connections are a promising system for studying secondary plasmodesmata. For open questions like how their formation is induced, how their positioning is controlled and if they are initiated by one or both bordering cells simultaneously, the parasite/host interface with two adjacent distinguishable genetic systems provides valuable advantages. We summarize here what is known about interspecific plasmodesmata between parasitic plants and their hosts and discuss the potential of the intriguing parasite/host system for deepening our insight into plasmodesmatal structure, function, and development. |
format | Online Article Text |
id | pubmed-8049502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80495022021-04-16 The Enigma of Interspecific Plasmodesmata: Insight From Parasitic Plants Fischer, Karsten Lachner, Lena Anna-Maria Olsen, Stian Mulisch, Maria Krause, Kirsten Front Plant Sci Plant Science Parasitic plants live in intimate physical connection with other plants serving as their hosts. These host plants provide the inorganic and organic compounds that the parasites need for their propagation. The uptake of the macromolecular compounds happens through symplasmic connections in the form of plasmodesmata. In contrast to regular plasmodesmata, which connect genetically identical cells of an individual plant, the plasmodesmata that connect the cells of host and parasite join separate individuals belonging to different species and are therefore termed “interspecific”. The existence of such interspecific plasmodesmata was deduced either indirectly using molecular approaches or observed directly by ultrastructural analyses. Most of this evidence concerns shoot parasitic Cuscuta species and root parasitic Orobanchaceae, which can both infect a large range of phylogenetically distant hosts. The existence of an interspecific chimeric symplast is both striking and unique and, with exceptions being observed in closely related grafted plants, exist only in these parasitic relationships. Considering the recent technical advances and upcoming tools for analyzing parasitic plants, interspecific plasmodesmata in parasite/host connections are a promising system for studying secondary plasmodesmata. For open questions like how their formation is induced, how their positioning is controlled and if they are initiated by one or both bordering cells simultaneously, the parasite/host interface with two adjacent distinguishable genetic systems provides valuable advantages. We summarize here what is known about interspecific plasmodesmata between parasitic plants and their hosts and discuss the potential of the intriguing parasite/host system for deepening our insight into plasmodesmatal structure, function, and development. Frontiers Media S.A. 2021-04-01 /pmc/articles/PMC8049502/ /pubmed/33868340 http://dx.doi.org/10.3389/fpls.2021.641924 Text en Copyright © 2021 Fischer, Lachner, Olsen, Mulisch and Krause. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Fischer, Karsten Lachner, Lena Anna-Maria Olsen, Stian Mulisch, Maria Krause, Kirsten The Enigma of Interspecific Plasmodesmata: Insight From Parasitic Plants |
title | The Enigma of Interspecific Plasmodesmata: Insight From Parasitic Plants |
title_full | The Enigma of Interspecific Plasmodesmata: Insight From Parasitic Plants |
title_fullStr | The Enigma of Interspecific Plasmodesmata: Insight From Parasitic Plants |
title_full_unstemmed | The Enigma of Interspecific Plasmodesmata: Insight From Parasitic Plants |
title_short | The Enigma of Interspecific Plasmodesmata: Insight From Parasitic Plants |
title_sort | enigma of interspecific plasmodesmata: insight from parasitic plants |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049502/ https://www.ncbi.nlm.nih.gov/pubmed/33868340 http://dx.doi.org/10.3389/fpls.2021.641924 |
work_keys_str_mv | AT fischerkarsten theenigmaofinterspecificplasmodesmatainsightfromparasiticplants AT lachnerlenaannamaria theenigmaofinterspecificplasmodesmatainsightfromparasiticplants AT olsenstian theenigmaofinterspecificplasmodesmatainsightfromparasiticplants AT mulischmaria theenigmaofinterspecificplasmodesmatainsightfromparasiticplants AT krausekirsten theenigmaofinterspecificplasmodesmatainsightfromparasiticplants AT fischerkarsten enigmaofinterspecificplasmodesmatainsightfromparasiticplants AT lachnerlenaannamaria enigmaofinterspecificplasmodesmatainsightfromparasiticplants AT olsenstian enigmaofinterspecificplasmodesmatainsightfromparasiticplants AT mulischmaria enigmaofinterspecificplasmodesmatainsightfromparasiticplants AT krausekirsten enigmaofinterspecificplasmodesmatainsightfromparasiticplants |