Cargando…
A Novel Method for Regional NO(2) Concentration Prediction Using Discrete Wavelet Transform and an LSTM Network
Achieving accurate predictions of urban NO(2) concentration is essential for effectively control of air pollution. This paper selected the concentration of NO(2) in Tianjin as the research object, concentrating predicting model based on Discrete Wavelet Transform and Long- and Short-Term Memory netw...
Autores principales: | Liu, Bingchun, Zhang, Lei, Wang, Qingshan, Chen, Jiali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049823/ https://www.ncbi.nlm.nih.gov/pubmed/33927755 http://dx.doi.org/10.1155/2021/6631614 |
Ejemplares similares
-
Air Pollutant Concentration Forecasting Using Long Short-Term Memory Based on Wavelet Transform and Information Gain: A Case Study of Beijing
por: Liu, Bingchun, et al.
Publicado: (2020) -
Ripples in mathematics: the discrete wavelet transform
por: Jensen, Arne, et al.
Publicado: (2001) -
Prediction of hot spots in protein–DNA binding interfaces based on discrete wavelet transform and wavelet packet transform
por: Sun, Yu, et al.
Publicado: (2023) -
Discrete wavelet transformations: an elementary approach with applications
por: Van Fleet, Patrick
Publicado: (2008) -
Substructure recover by 3D Discrete Wavelet Transforms
por: Pagliaro, A, et al.
Publicado: (1998)