Cargando…

Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms

Impairment of health after overcoming the acute phase of COVID-19 is being observed more and more frequently. Here different symptoms of neurological and/or cardiological origin have been reported. With symptoms, which are very similar to the ones reported but are not caused by SARS-CoV-2, the occur...

Descripción completa

Detalles Bibliográficos
Autores principales: Wallukat, Gerd, Hohberger, Bettina, Wenzel, Katrin, Fürst, Julia, Schulze-Rothe, Sarah, Wallukat, Anne, Hönicke, Anne-Sophie, Müller, Johannes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049853/
https://www.ncbi.nlm.nih.gov/pubmed/33880442
http://dx.doi.org/10.1016/j.jtauto.2021.100100
Descripción
Sumario:Impairment of health after overcoming the acute phase of COVID-19 is being observed more and more frequently. Here different symptoms of neurological and/or cardiological origin have been reported. With symptoms, which are very similar to the ones reported but are not caused by SARS-CoV-2, the occurrence of functionally active autoantibodies ((f)AABs) targeting G-protein coupled receptors (GPCR-(f)AABs) has been discussed to be involved. We, therefore investigated, whether GPCR-(f)AABs are detectable in 31 patients suffering from different Long-COVID-19 symptoms after recovery from the acute phase of the disease. The spectrum of symptoms was mostly of neurological origin (29/31 patients), including post-COVID-19 fatigue, alopecia, attention deficit, tremor and others. Combined neurological and cardiovascular disorders were reported in 17 of the 31 patients. Two recovered COVID-19 patients were free of follow-up symptoms. All 31 former COVID-19 patients had between 2 and 7 different GPCR-(f)AABs that acted as receptor agonists. Some of those GPCR-(f)AABs activate their target receptors which cause a positive chronotropic effect in neonatal rat cardiomyocytes, the read-out in the test system for their detection (bioassay for GPCR-(f)AAB detection). Other GPCR-(f)AABs, in opposite, cause a negative chronotropic effect on those cells. The positive chronotropic GPCR-(f)AABs identified in the blood of Long-COVID patients targeted the β(2)-adrenoceptor (β(2)-(f)AAB), the α(1)-adrenoceptor (α(1)-(f)AAB), the angiotensin II AT1-receptor (AT1-(f)AAB), and the nociceptin—like opioid receptor (NOC-(f)AAB). The negative chronotropic GPCR-(f)AABs identified targeted the muscarinic M(2)-receptor (M(2)-(f)AAB), the MAS-receptor (MAS-(f)AAB), and the ETA-receptor (ETA-(f)AAB). It was analysed which of the extracellular receptor loops was targeted by the autoantibodies.