Cargando…
Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction
Recent years have seen a resurgence of interest in inexpensive low magnetic field (< 0.3 T) MRI systems mainly due to advances in magnet, coil and gradient set designs. Most of these advances have focused on improving hardware and signal acquisition strategies, and far less on the use of advanced...
Autores principales: | Koonjoo, N., Zhu, B., Bagnall, G. Cody, Bhutto, D., Rosen, M. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8050246/ https://www.ncbi.nlm.nih.gov/pubmed/33859218 http://dx.doi.org/10.1038/s41598-021-87482-7 |
Ejemplares similares
-
Low-field magnetic resonance imaging of roots in intact clayey and silty soils
por: Bagnall, G. Cody, et al.
Publicado: (2020) -
DeepNoise: Signal and Noise Disentanglement Based on Classifying Fluorescent Microscopy Images via Deep Learning
por: Yang, Sen, et al.
Publicado: (2022) -
Deep learning for fast low-field MRI acquisitions
por: Ayde, Reina, et al.
Publicado: (2022) -
Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise
por: Kim, Joo Hee, et al.
Publicado: (2021) -
High signal-to-noise ratio reconstruction of low bit-depth optical coherence tomography using deep learning
por: Hao, Qiangjiang, et al.
Publicado: (2020)