Cargando…
Surgical planning in patients with brain glioma using diffusion tensor MR imaging and tractography
BACKGROUND: Diffusion-tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that depicts the integrity of white matter (WM) tracts. This study was conducted to assess the utility of DTI tractography as an imaging technique in assessment of brain gliomas and planning of the surgical co...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8050646/ http://dx.doi.org/10.1186/s43055-021-00490-5 |
Sumario: | BACKGROUND: Diffusion-tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that depicts the integrity of white matter (WM) tracts. This study was conducted to assess the utility of DTI tractography as an imaging technique in assessment of brain gliomas and planning of the surgical corridor. RESULTS: Twenty adult patients with brain gliomas were included. Neurological examination and conventional MRI and DTI scans were performed before and after surgery. Low-grade and high-grade tumors were found in 30% and 70% of patients, respectively. Preoperative DTI demonstrated five patterns of WM tract involvement: non-affected (10%), displaced (75%), edematous (55%), infiltrated (60%), and disrupted (20%). The obtained DTI scans were used for preoperative planning of the surgical corridor and extent of resection to achieve the maximum resection while preserving the WM tracts. Total resection was achieved in 40%, while 60% underwent subtotal resection. Postoperative neurological examination showed deterioration of cognitive function, motor power, and vision in 15%, 10%, and 5% of patients, respectively. Headache persisted in 15%, while motor power improved in 35% of patients. High-grade tumors were significantly associated with higher percentage of subtotal resection (p=0.018) and pattern IV (p=0.018). There was a significant association between the preoperative pattern of WM tract involvement and the postoperative DTI changes (p<0.001). CONCLUSION: DTI enables assessment of displaced and infiltrated WM tracts in the vicinity of brain tumors. Preoperative planning of tumor resection and surgical corridor should include DTI scan to achieve the balance between maximum resection of tumor and maximal preservation of function. |
---|