Cargando…
Comparison of Methods to Reduce Bias From Clinical Prediction Models of Postpartum Depression
IMPORTANCE: The lack of standards in methods to reduce bias for clinical algorithms presents various challenges in providing reliable predictions and in addressing health disparities. OBJECTIVE: To evaluate approaches for reducing bias in machine learning models using a real-world clinical scenario....
Autores principales: | Park, Yoonyoung, Hu, Jianying, Singh, Moninder, Sylla, Issa, Dankwa-Mullan, Irene, Koski, Eileen, Das, Amar K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8050742/ https://www.ncbi.nlm.nih.gov/pubmed/33856478 http://dx.doi.org/10.1001/jamanetworkopen.2021.3909 |
Ejemplares similares
-
Hierarchical patient-centric caregiver network method for clinical outcomes study
por: Park, Yoonyoung, et al.
Publicado: (2019) -
Artificial Intelligence and Machine Learning Technologies in Cancer Care: Addressing Disparities, Bias, and Data Diversity
por: Dankwa-Mullan, Irene, et al.
Publicado: (2022) -
Transforming Diabetes Care Through Artificial Intelligence: The Future Is Here
por: Dankwa-Mullan, Irene, et al.
Publicado: (2019) -
Association of Antepartum and Postpartum Air Pollution Exposure With Postpartum Depression in Southern California
por: Sun, Yi, et al.
Publicado: (2023) -
Neighborhood Disadvantage, Race and Ethnicity, and Postpartum Depression
por: Onyewuenyi, Ticara L., et al.
Publicado: (2023)