Cargando…
Radiomic and Genomic Machine Learning Method Performance for Prostate Cancer Diagnosis: Systematic Literature Review
BACKGROUND: Machine learning algorithms have been drawing attention at the joining of pathology and radiology in prostate cancer research. However, due to their algorithmic learning complexity and the variability of their architecture, there is an ongoing need to analyze their performance. OBJECTIVE...
Autores principales: | Castaldo, Rossana, Cavaliere, Carlo, Soricelli, Andrea, Salvatore, Marco, Pecchia, Leandro, Franzese, Monica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8050752/ https://www.ncbi.nlm.nih.gov/pubmed/33792552 http://dx.doi.org/10.2196/22394 |
Ejemplares similares
-
A Framework of Analysis to Facilitate the Harmonization of Multicenter Radiomic Features in Prostate Cancer
por: Castaldo, Rossana, et al.
Publicado: (2022) -
A Complex Radiomic Signature in Luminal Breast Cancer from a Weighted Statistical Framework: A Pilot Study
por: Castaldo, Rossana, et al.
Publicado: (2022) -
A Combined Radiomics and Machine Learning Approach to Distinguish Clinically Significant Prostate Lesions on a Publicly Available MRI Dataset
por: Donisi, Leandro, et al.
Publicado: (2021) -
On the use of approximate entropy and sample entropy with centre of pressure time-series
por: Montesinos, Luis, et al.
Publicado: (2018) -
Bringing radiomics into a multi-omics framework for a comprehensive genotype–phenotype characterization of oncological diseases
por: Zanfardino, Mario, et al.
Publicado: (2019)