Cargando…
Wildfire-Induced CO Plume Observations From NAST-I During the FIREX-AQ Field Campaign
The fire influence on regional to global environments and air quality (FIREX-AQ) field campaign was conducted during August 2019 to investigate the impact of wildfire and biomass smoke on air quality and weather in the continental United States. One of the campaign’s scientific objectives was to est...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8050943/ https://www.ncbi.nlm.nih.gov/pubmed/33868549 http://dx.doi.org/10.1109/jstars.2021.3059855 |
_version_ | 1783679666743148544 |
---|---|
author | Zhou, Daniel K. Larar, Allen M. Liu, Xu Noe, Anna M. Diskin, Glenn S. Soja, Amber J. Arnold, G. Thomas McGill, Matthew J. |
author_facet | Zhou, Daniel K. Larar, Allen M. Liu, Xu Noe, Anna M. Diskin, Glenn S. Soja, Amber J. Arnold, G. Thomas McGill, Matthew J. |
author_sort | Zhou, Daniel K. |
collection | PubMed |
description | The fire influence on regional to global environments and air quality (FIREX-AQ) field campaign was conducted during August 2019 to investigate the impact of wildfire and biomass smoke on air quality and weather in the continental United States. One of the campaign’s scientific objectives was to estimate the composition of emissions from wildfires. Ultraspectrally resolved infrared radiance measurements from aircraft and/or satellite observations contain information on tropospheric carbon monoxide (CO) as well as other trace species present in fire emissions. A methodology for retrieving tropospheric CO from such remotely sensed spectral data has been developed for the National Airborne Sounder Testbed-Interferometer (NAST-I) and is applied herein. Retrievals based on NAST-I measurements are used to demonstrate CO retrieval capability and characterize fire emissions. NAST-I remotely sensed CO from ER-2 flights are evaluated with concurrent in situ measurements from the differential absorption carbon monoxide measurements flown on the NASA DC-8 aircraft. Enhanced CO emissions along with plume evolution and transport from the fire ground site locations were captured by moderate vertical and high horizontal resolution observations obtained from the NAST-I IR spectrometer; these were intercompared and verified by the cloud physics lidar and the enhanced MODIS airborne simulator also hosted on the NASA ER-2 aircraft. This study will be beneficial to the science community for studying wildfire-related topics and understanding similar remotely sensed observations from satellites, along with helping to address the broader FIREX-AQ experiment objectives of investigating the impact of fires on air quality and climate. |
format | Online Article Text |
id | pubmed-8050943 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-80509432021-04-16 Wildfire-Induced CO Plume Observations From NAST-I During the FIREX-AQ Field Campaign Zhou, Daniel K. Larar, Allen M. Liu, Xu Noe, Anna M. Diskin, Glenn S. Soja, Amber J. Arnold, G. Thomas McGill, Matthew J. IEEE J Sel Top Appl Earth Obs Remote Sens Article The fire influence on regional to global environments and air quality (FIREX-AQ) field campaign was conducted during August 2019 to investigate the impact of wildfire and biomass smoke on air quality and weather in the continental United States. One of the campaign’s scientific objectives was to estimate the composition of emissions from wildfires. Ultraspectrally resolved infrared radiance measurements from aircraft and/or satellite observations contain information on tropospheric carbon monoxide (CO) as well as other trace species present in fire emissions. A methodology for retrieving tropospheric CO from such remotely sensed spectral data has been developed for the National Airborne Sounder Testbed-Interferometer (NAST-I) and is applied herein. Retrievals based on NAST-I measurements are used to demonstrate CO retrieval capability and characterize fire emissions. NAST-I remotely sensed CO from ER-2 flights are evaluated with concurrent in situ measurements from the differential absorption carbon monoxide measurements flown on the NASA DC-8 aircraft. Enhanced CO emissions along with plume evolution and transport from the fire ground site locations were captured by moderate vertical and high horizontal resolution observations obtained from the NAST-I IR spectrometer; these were intercompared and verified by the cloud physics lidar and the enhanced MODIS airborne simulator also hosted on the NASA ER-2 aircraft. This study will be beneficial to the science community for studying wildfire-related topics and understanding similar remotely sensed observations from satellites, along with helping to address the broader FIREX-AQ experiment objectives of investigating the impact of fires on air quality and climate. 2021-02-19 2021 /pmc/articles/PMC8050943/ /pubmed/33868549 http://dx.doi.org/10.1109/jstars.2021.3059855 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Zhou, Daniel K. Larar, Allen M. Liu, Xu Noe, Anna M. Diskin, Glenn S. Soja, Amber J. Arnold, G. Thomas McGill, Matthew J. Wildfire-Induced CO Plume Observations From NAST-I During the FIREX-AQ Field Campaign |
title | Wildfire-Induced CO Plume Observations From NAST-I During the FIREX-AQ Field Campaign |
title_full | Wildfire-Induced CO Plume Observations From NAST-I During the FIREX-AQ Field Campaign |
title_fullStr | Wildfire-Induced CO Plume Observations From NAST-I During the FIREX-AQ Field Campaign |
title_full_unstemmed | Wildfire-Induced CO Plume Observations From NAST-I During the FIREX-AQ Field Campaign |
title_short | Wildfire-Induced CO Plume Observations From NAST-I During the FIREX-AQ Field Campaign |
title_sort | wildfire-induced co plume observations from nast-i during the firex-aq field campaign |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8050943/ https://www.ncbi.nlm.nih.gov/pubmed/33868549 http://dx.doi.org/10.1109/jstars.2021.3059855 |
work_keys_str_mv | AT zhoudanielk wildfireinducedcoplumeobservationsfromnastiduringthefirexaqfieldcampaign AT lararallenm wildfireinducedcoplumeobservationsfromnastiduringthefirexaqfieldcampaign AT liuxu wildfireinducedcoplumeobservationsfromnastiduringthefirexaqfieldcampaign AT noeannam wildfireinducedcoplumeobservationsfromnastiduringthefirexaqfieldcampaign AT diskinglenns wildfireinducedcoplumeobservationsfromnastiduringthefirexaqfieldcampaign AT sojaamberj wildfireinducedcoplumeobservationsfromnastiduringthefirexaqfieldcampaign AT arnoldgthomas wildfireinducedcoplumeobservationsfromnastiduringthefirexaqfieldcampaign AT mcgillmatthewj wildfireinducedcoplumeobservationsfromnastiduringthefirexaqfieldcampaign |