Cargando…

Differences in spatial distribution between WHO 2016 low-grade glioma molecular subgroups

BACKGROUND: Several studies reported a correlation between anatomic location and genetic background of low-grade gliomas (LGGs). As such, tumor location may contribute to presurgical clinical decision-making. Our purpose was to visualize and compare the spatial distribution of different WHO 2016 gli...

Descripción completa

Detalles Bibliográficos
Autores principales: Wijnenga, Maarten M J, van der Voort, Sebastian R, French, Pim J, Klein, Stefan, Dubbink, Hendrikus J, Dinjens, Winand N M, Atmodimedjo, Peggy N, de Groot, Marius, Kros, Johan M, Schouten, Joost W, Dirven, Clemens M F, Vincent, Arnaud J P E, Smits, Marion, van den Bent, Martin J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051437/
https://www.ncbi.nlm.nih.gov/pubmed/33889844
http://dx.doi.org/10.1093/noajnl/vdz001
Descripción
Sumario:BACKGROUND: Several studies reported a correlation between anatomic location and genetic background of low-grade gliomas (LGGs). As such, tumor location may contribute to presurgical clinical decision-making. Our purpose was to visualize and compare the spatial distribution of different WHO 2016 gliomas, frequently aberrated single genes and DNA copy number alterations within subgroups, and groups of postoperative tumor volume. METHODS: Adult grade II glioma patients (WHO 2016 classified) diagnosed between 2003 and 2016 were included. Tumor volume and location were assessed with semi-automatic software. All volumes of interest were mapped to a standard reference brain. Location heatmaps were created for each WHO 2016 glioma subgroup, frequently aberrated single genes and copy numbers (CNVs), as well as heatmaps according to groups of postoperative tumor volume. Differences between subgroups were determined using voxelwise permutation testing. RESULTS: A total of 110 IDH mutated astrocytoma patients, 92 IDH mutated and 1p19q co-deleted oligodendroglioma patients, and 22 IDH wild-type astrocytoma patients were included. We identified small regions in which specific molecular subtypes occurred more frequently. IDH-mutated LGGs were more frequently located in the frontal lobes and IDH wild-type tumors more frequently in the basal ganglia of the right hemisphere. We found no localizations of significant difference for single genes/CNVs in subgroups, except for loss of 9p in oligodendrogliomas with a predilection for the left parietal lobes. More extensive resections in LGG were associated with frontal locations. CONCLUSIONS: WHO low-grade glioma subgroups show differences in spatial distribution. Our data may contribute to presurgical clinical decision-making in LGG patients.