Cargando…

Improving the Prognosis of Colon Cancer through Knowledge-Based Clinical-Molecular Integrated Analysis

BACKGROUND: Colon cancer has high morbidity and mortality rates among cancers. Existing clinical staging systems cannot accurately assess the prognostic risk of colon cancer patients. This study was aimed at improving the prognostic performance of the colon cancer clinical staging system through kno...

Descripción completa

Detalles Bibliográficos
Autores principales: Tong, Danyang, Tian, Yu, Ye, Qiancheng, Li, Jun, Ding, Kefeng, Li, Jingsong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051523/
https://www.ncbi.nlm.nih.gov/pubmed/33928165
http://dx.doi.org/10.1155/2021/9987819
Descripción
Sumario:BACKGROUND: Colon cancer has high morbidity and mortality rates among cancers. Existing clinical staging systems cannot accurately assess the prognostic risk of colon cancer patients. This study was aimed at improving the prognostic performance of the colon cancer clinical staging system through knowledge-based clinical-molecular integrated analysis. METHODS: 374 samples from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset were used as the discovery set. 98 samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset were used as the validation set. After converting gene expression data into pathway dysregulation scores (PDSs), the random survival forest and Cox model were used to identify the best prognostic supplementary factors. The corresponding clinical-molecular integrated prognostic model was built, and the improvement of prognostic performance was assessed by comparing with the clinical prognostic model. RESULTS: The PDS of 14 pathways played important roles in prognostic prediction together with clinical prognostic factors through the random survival forest. Further screening with the Cox model revealed that the PDS of the pathway hsa00532 was the best clinical prognostic supplementary factor. The integrated prognostic model constructed with clinical factors and the identified molecular factor was superior to the clinical prognostic model in discriminative performance. Kaplan-Meier (KM) curves of patients grouped by PDS suggested that patients with a higher PDS had a poorer prognosis, and stage II patients could be distinctly distinguished. CONCLUSIONS: Based on the knowledge-based clinical-molecular integrated analysis, a clinical-molecular integrated prognostic model and corresponding nomogram for colon cancer overall survival prognosis was built, which showed better prognostic performance than the clinical prognostic model. The PDS of the pathway hsa00532 is a considerable clinical prognostic supplementary factor for colon cancer and may represent a potential prognostic marker for stage II colon cancer. The PDS calculation involves only 16 genes, which supports its potential for clinical application.