Cargando…

A chromosome‐level genome assembly provides insights into ascorbic acid accumulation and fruit softening in guava (Psidium guajava)

Guava (Psidium guajava) is an important fleshy‐fruited tree of the Myrtaceae family that is widely cultivated in tropical and subtropical areas of the world and has attracted considerable attention for the richness of ascorbic acid in its fruits. However, studies on the evolution and genetic breedin...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Chen, Feng, Chao, Lin, Xinggu, Liu, Shenghui, Li, Yingzhi, Kang, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051600/
https://www.ncbi.nlm.nih.gov/pubmed/33098334
http://dx.doi.org/10.1111/pbi.13498
Descripción
Sumario:Guava (Psidium guajava) is an important fleshy‐fruited tree of the Myrtaceae family that is widely cultivated in tropical and subtropical areas of the world and has attracted considerable attention for the richness of ascorbic acid in its fruits. However, studies on the evolution and genetic breeding potential of guava are hindered by the lack of a reference genome. Here, we present a chromosome‐level genomic assembly of guava using PacBio sequencing and Hi‐C technology. We found that the genome assembly size was 443.8 Mb with a contig N50 of ~15.8 Mb. We annotated a total of 25 601 genes and 193.2 Mb of repetitive sequences for this genome. Comparative genomic analysis revealed that guava has undergone a recent whole‐genome duplication (WGD) event shared by all species in Myrtaceae. In addition, through metabolic analysis, we determined that the L‐galactose pathway plays a major role in ascorbic acid biosynthesis in guava fruits. Moreover, the softening of fruits of guava may result from both starch and cell wall degradation according to analyses of gene expression profiles and positively selected genes. Our data provide a foundational resource to support molecular breeding of guava and represent new insights into the evolution of soft, fleshy fruits in Myrtaceae.