Cargando…

Construction of a robust prognostic model for adult adrenocortical carcinoma: Results from bioinformatics and real‐world data

This study aims to construct a robust prognostic model for adult adrenocortical carcinoma (ACC) by large‐scale multiomics analysis and real‐world data. The RPPA data, gene expression profiles and clinical information of adult ACC patients were obtained from The Cancer Proteome Atlas (TCPA), Gene Exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Xi, Xu, Wen‐Hao, Anwaier, Aihetaimujiang, Wang, Hong‐Kai, Wan, Fang‐Ning, Cao, Da‐Long, Luo, Wen‐Jie, Shi, Guo‐Hai, Qu, Yuan‐Yuan, Zhang, Hai‐Liang, Ye, Ding‐Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051734/
https://www.ncbi.nlm.nih.gov/pubmed/33626208
http://dx.doi.org/10.1111/jcmm.16323
_version_ 1783679788687294464
author Tian, Xi
Xu, Wen‐Hao
Anwaier, Aihetaimujiang
Wang, Hong‐Kai
Wan, Fang‐Ning
Cao, Da‐Long
Luo, Wen‐Jie
Shi, Guo‐Hai
Qu, Yuan‐Yuan
Zhang, Hai‐Liang
Ye, Ding‐Wei
author_facet Tian, Xi
Xu, Wen‐Hao
Anwaier, Aihetaimujiang
Wang, Hong‐Kai
Wan, Fang‐Ning
Cao, Da‐Long
Luo, Wen‐Jie
Shi, Guo‐Hai
Qu, Yuan‐Yuan
Zhang, Hai‐Liang
Ye, Ding‐Wei
author_sort Tian, Xi
collection PubMed
description This study aims to construct a robust prognostic model for adult adrenocortical carcinoma (ACC) by large‐scale multiomics analysis and real‐world data. The RPPA data, gene expression profiles and clinical information of adult ACC patients were obtained from The Cancer Proteome Atlas (TCPA), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Integrated prognosis‐related proteins (IPRPs) model was constructed. Immunohistochemistry was used to validate the prognostic value of the IPRPs model in Fudan University Shanghai Cancer Center (FUSCC) cohort. 76 ACC cases from TCGA and 22 ACC cases from GSE10927 in NCBI’s GEO database with full data for clinical information and gene expression were utilized to validate the effectiveness of the IPRPs model. Higher FASN (P = .039), FIBRONECTIN (P < .001), TFRC (P < .001), TSC1 (P < .001) expression indicated significantly worse overall survival for adult ACC patients. Risk assessment suggested significantly a strong predictive capacity of IPRPs model for poor overall survival (P < .05). IPRPs model showed a little stronger ability for predicting prognosis than Ki‐67 protein in FUSCC cohort (P = .003, HR = 3.947; P = .005, HR = 3.787). In external validation of IPRPs model using gene expression data, IPRPs model showed strong ability for predicting prognosis in TCGA cohort (P = .005, HR = 3.061) and it exhibited best ability for predicting prognosis in GSE10927 cohort (P = .0898, HR = 2.318). This research constructed IPRPs model for predicting adult ACC patients’ prognosis using proteomic data, gene expression data and real‐world data and this prognostic model showed stronger predictive value than other biomarkers (Ki‐67, Beta‐catenin, etc) in multi‐cohorts.
format Online
Article
Text
id pubmed-8051734
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-80517342021-04-21 Construction of a robust prognostic model for adult adrenocortical carcinoma: Results from bioinformatics and real‐world data Tian, Xi Xu, Wen‐Hao Anwaier, Aihetaimujiang Wang, Hong‐Kai Wan, Fang‐Ning Cao, Da‐Long Luo, Wen‐Jie Shi, Guo‐Hai Qu, Yuan‐Yuan Zhang, Hai‐Liang Ye, Ding‐Wei J Cell Mol Med Original Articles This study aims to construct a robust prognostic model for adult adrenocortical carcinoma (ACC) by large‐scale multiomics analysis and real‐world data. The RPPA data, gene expression profiles and clinical information of adult ACC patients were obtained from The Cancer Proteome Atlas (TCPA), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Integrated prognosis‐related proteins (IPRPs) model was constructed. Immunohistochemistry was used to validate the prognostic value of the IPRPs model in Fudan University Shanghai Cancer Center (FUSCC) cohort. 76 ACC cases from TCGA and 22 ACC cases from GSE10927 in NCBI’s GEO database with full data for clinical information and gene expression were utilized to validate the effectiveness of the IPRPs model. Higher FASN (P = .039), FIBRONECTIN (P < .001), TFRC (P < .001), TSC1 (P < .001) expression indicated significantly worse overall survival for adult ACC patients. Risk assessment suggested significantly a strong predictive capacity of IPRPs model for poor overall survival (P < .05). IPRPs model showed a little stronger ability for predicting prognosis than Ki‐67 protein in FUSCC cohort (P = .003, HR = 3.947; P = .005, HR = 3.787). In external validation of IPRPs model using gene expression data, IPRPs model showed strong ability for predicting prognosis in TCGA cohort (P = .005, HR = 3.061) and it exhibited best ability for predicting prognosis in GSE10927 cohort (P = .0898, HR = 2.318). This research constructed IPRPs model for predicting adult ACC patients’ prognosis using proteomic data, gene expression data and real‐world data and this prognostic model showed stronger predictive value than other biomarkers (Ki‐67, Beta‐catenin, etc) in multi‐cohorts. John Wiley and Sons Inc. 2021-02-24 2021-04 /pmc/articles/PMC8051734/ /pubmed/33626208 http://dx.doi.org/10.1111/jcmm.16323 Text en © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Tian, Xi
Xu, Wen‐Hao
Anwaier, Aihetaimujiang
Wang, Hong‐Kai
Wan, Fang‐Ning
Cao, Da‐Long
Luo, Wen‐Jie
Shi, Guo‐Hai
Qu, Yuan‐Yuan
Zhang, Hai‐Liang
Ye, Ding‐Wei
Construction of a robust prognostic model for adult adrenocortical carcinoma: Results from bioinformatics and real‐world data
title Construction of a robust prognostic model for adult adrenocortical carcinoma: Results from bioinformatics and real‐world data
title_full Construction of a robust prognostic model for adult adrenocortical carcinoma: Results from bioinformatics and real‐world data
title_fullStr Construction of a robust prognostic model for adult adrenocortical carcinoma: Results from bioinformatics and real‐world data
title_full_unstemmed Construction of a robust prognostic model for adult adrenocortical carcinoma: Results from bioinformatics and real‐world data
title_short Construction of a robust prognostic model for adult adrenocortical carcinoma: Results from bioinformatics and real‐world data
title_sort construction of a robust prognostic model for adult adrenocortical carcinoma: results from bioinformatics and real‐world data
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051734/
https://www.ncbi.nlm.nih.gov/pubmed/33626208
http://dx.doi.org/10.1111/jcmm.16323
work_keys_str_mv AT tianxi constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata
AT xuwenhao constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata
AT anwaieraihetaimujiang constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata
AT wanghongkai constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata
AT wanfangning constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata
AT caodalong constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata
AT luowenjie constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata
AT shiguohai constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata
AT quyuanyuan constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata
AT zhanghailiang constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata
AT yedingwei constructionofarobustprognosticmodelforadultadrenocorticalcarcinomaresultsfrombioinformaticsandrealworlddata