Cargando…
Automatic image annotation for fluorescent cell nuclei segmentation
Dataset annotation is a time and labor-intensive task and an integral requirement for training and testing deep learning models. The segmentation of images in life science microscopy requires annotated image datasets for object detection tasks such as instance segmentation. Although the amount of an...
Autores principales: | Englbrecht, Fabian, Ruider, Iris E., Bausch, Andreas R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051811/ https://www.ncbi.nlm.nih.gov/pubmed/33861785 http://dx.doi.org/10.1371/journal.pone.0250093 |
Ejemplares similares
-
Automatic Extraction of Nuclei Centroids of Mouse Embryonic Cells from Fluorescence Microscopy Images
por: Bashar, Md. Khayrul, et al.
Publicado: (2012) -
Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
por: Veta, Mitko, et al.
Publicado: (2013) -
Annotation-efficient deep learning for automatic medical image segmentation
por: Wang, Shanshan, et al.
Publicado: (2021) -
An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images
por: Jung, Hwejin, et al.
Publicado: (2019) -
Efficient automatic 3D segmentation of cell nuclei for high-content screening
por: Marzec, Mariusz, et al.
Publicado: (2022)