Cargando…
Three-class brain tumor classification using deep dense inception residual network
Three-class brain tumor classification becomes a contemporary research task due to the distinct characteristics of tumors. The existing proposals employ deep neural networks for the three-class classification. However, achieving high accuracy is still an endless challenge in brain image classificati...
Autores principales: | Kokkalla, Srinath, Kakarla, Jagadeesh, Venkateswarlu, Isunuri B., Singh, Munesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051839/ https://www.ncbi.nlm.nih.gov/pubmed/33897297 http://dx.doi.org/10.1007/s00500-021-05748-8 |
Ejemplares similares
-
COVID-19 detection from chest x-ray using MobileNet and residual separable convolution block
por: Tangudu, V. Santhosh Kumar, et al.
Publicado: (2022) -
A novel proposed CNN–SVM architecture for ECG scalograms classification
por: Ozaltin, Oznur, et al.
Publicado: (2022) -
CFDIL: a context-aware feature deep interaction learning for app recommendation
por: Hao, Qingbo, et al.
Publicado: (2022) -
Deep learning models for detecting respiratory pathologies from raw lung auscultation sounds
por: Alqudah, Ali Mohammad, et al.
Publicado: (2022) -
RETRACTED ARTICLE: India perspective: CNN-LSTM hybrid deep learning model-based COVID-19 prediction and current status of medical resource availability
por: Ketu, Shwet, et al.
Publicado: (2021)