Cargando…
DRISTI: a hybrid deep neural network for diabetic retinopathy diagnosis
Diabetic retinopathy (DR) is a significant reason for the global increase in visual loss. Studies show that timely treatment can significantly bring down such incidents. Hence, it is essential to distinguish the stages and severity of DR to recommend needed medical attention. In this view, this pape...
Autores principales: | Kumar, Gaurav, Chatterjee, Shraban, Chattopadhyay, Chiranjoy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051933/ https://www.ncbi.nlm.nih.gov/pubmed/33897905 http://dx.doi.org/10.1007/s11760-021-01904-7 |
Ejemplares similares
-
Performance Analysis of Deep-Neural-Network-Based Automatic Diagnosis of Diabetic Retinopathy
por: Tariq, Hassan, et al.
Publicado: (2021) -
Automated retinopathy of prematurity screening using deep neural networks
por: Wang, Jianyong, et al.
Publicado: (2018) -
Chromatin accessibility prediction via a hybrid deep convolutional neural
network
por: Liu, Qiao, et al.
Publicado: (2018) -
Early Diagnosis and Quantitative Analysis of Stages in Retinopathy of Prematurity Based on Deep Convolutional Neural Networks
por: Li, Peng, et al.
Publicado: (2022) -
Deep Transfer Learning Models for Medical Diabetic Retinopathy Detection
por: Khalifa, Nour Eldeen M., et al.
Publicado: (2019)