Cargando…

Multi-omic analyses in Abyssinian cats with primary renal amyloid deposits

The amyloidoses constitute a group of diseases occurring in humans and animals that are characterized by abnormal deposits of aggregated proteins in organs, affecting their structure and function. In the Abyssinian cat breed, a familial form of renal amyloidosis has been described. In this study, mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Genova, Francesca, Nonnis, Simona, Maffioli, Elisa, Tedeschi, Gabriella, Strillacci, Maria Giuseppina, Carisetti, Michela, Sironi, Giuseppe, Cupaioli, Francesca Anna, Di Nanni, Noemi, Mezzelani, Alessandra, Mosca, Ettore, Helps, Christopher R., Leegwater, Peter A. J., Dorso, Laetitia, Longeri, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052419/
https://www.ncbi.nlm.nih.gov/pubmed/33863921
http://dx.doi.org/10.1038/s41598-021-87168-0
Descripción
Sumario:The amyloidoses constitute a group of diseases occurring in humans and animals that are characterized by abnormal deposits of aggregated proteins in organs, affecting their structure and function. In the Abyssinian cat breed, a familial form of renal amyloidosis has been described. In this study, multi-omics analyses were applied and integrated to explore some aspects of the unknown pathogenetic processes in cats. Whole-genome sequences of two affected Abyssinians and 195 controls of other breeds (part of the 99 Lives initiative) were screened to prioritize potential disease-associated variants. Proteome and miRNAome from formalin-fixed paraffin-embedded kidney specimens of fully necropsied Abyssinian cats, three affected and three non-amyloidosis-affected were characterized. While the trigger of the disorder remains unclear, overall, (i) 35,960 genomic variants were detected; (ii) 215 and 56 proteins were identified as exclusive or overexpressed in the affected and control kidneys, respectively; (iii) 60 miRNAs were differentially expressed, 20 of which are newly described. With omics data integration, the general conclusions are: (i) the familial amyloid renal form in Abyssinians is not a simple monogenic trait; (ii) amyloid deposition is not triggered by mutated amyloidogenic proteins but is a mix of proteins codified by wild-type genes; (iii) the form is biochemically classifiable as AA amyloidosis.