Cargando…

Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome

Trimethylamine-N-oxide (TMAO), a derivative from the gut microbiota metabolite trimethylamine (TMA), has been identified to be an independent risk factor for promoting atherosclerosis. Evidences suggest that berberine (BBR) could be used to treat obesity, diabetes and atherosclerosis, however, its m...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xingxing, Su, Chunyan, Jiang, Zhibo, Yang, Yuxin, Zhang, Yue, Yang, Mengxia, Zhang, Xiumin, Du, Yu, Zhang, Jin, Wang, Li, Jiang, Jiandong, Hong, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052457/
https://www.ncbi.nlm.nih.gov/pubmed/33863898
http://dx.doi.org/10.1038/s41522-021-00205-8
Descripción
Sumario:Trimethylamine-N-oxide (TMAO), a derivative from the gut microbiota metabolite trimethylamine (TMA), has been identified to be an independent risk factor for promoting atherosclerosis. Evidences suggest that berberine (BBR) could be used to treat obesity, diabetes and atherosclerosis, however, its mechanism is not clear mainly because of its poor oral bioavailability. Here, we show that BBR attenuated TMA/TMAO production in the C57BL/6J and ApoE KO mice fed with choline-supplemented chow diet, and mitigated atherosclerotic lesion areas in ApoE KO mice. Inhibition of TMA/TMAO production by BBR-modulated gut microbiota was proved by a single-dose administration of d9-choline in vivo. Metagenomic analysis of cecal contents demonstrated that BBR altered gut microbiota composition, microbiome functionality, and cutC/cntA gene abundance. Furthermore, BBR was shown to inhibit choline-to-TMA conversion in TMA-producing bacteria in vitro and in gut microbial consortium from fecal samples of choline-fed mice and human volunteers, and the result was confirmed by transplantation of TMA-producing bacteria in mice. These results offer new insights into the mechanisms responsible for the anti-atherosclerosis effects of BBR, which inhibits commensal microbial TMA production via gut microbiota remodeling.