Cargando…

Sensitive quantitative detection of SARS-CoV-2 in clinical samples using digital warm-start CRISPR assay

Quantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is crucial for early diagnosis and timely medical treatment of coronavirus disease 2019. Here, we describe a digital warm-start CRISPR (dWS-CRISPR) assay for sensitive quantitative detection of SARS-CoV-2 in...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Xiong, Yin, Kun, Li, Ziyue, Sfeir, Maroun M., Liu, Changchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052607/
https://www.ncbi.nlm.nih.gov/pubmed/33878591
http://dx.doi.org/10.1016/j.bios.2021.113218
Descripción
Sumario:Quantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is crucial for early diagnosis and timely medical treatment of coronavirus disease 2019. Here, we describe a digital warm-start CRISPR (dWS-CRISPR) assay for sensitive quantitative detection of SARS-CoV-2 in clinical samples. The dWS-CRISPR assay is initiated at above 50 °C and overcomes undesired premature target amplification at room temperature, enabling accurate and reliable digital quantification of SARS-CoV-2. By targeting SARS-CoV-2's nucleoprotein gene, the dWS-CRISPR assay is able to detect down to 5 copies/μl SARS-CoV-2 RNA in the chip. It is clinically validated by quantitatively determining 32 clinical swab samples and three clinical saliva samples. Moreover, it has been demonstrated to directly detect SARS-CoV-2 in heat-treated saliva samples without RNA extraction. Thus, the dWS-CRISPR method, as a sensitive and reliable CRISPR assay, facilitates accurate SARS-CoV-2 detection toward digitized quantification.