Cargando…
Aliphatic extractive effects on acetic acid catalysis of typical agricultural residues to xylo-oligosaccharide and enzymatic hydrolyzability of cellulose
BACKGROUND: Xylo-oligosaccharide is the spotlight of functional sugar that improves the economic benefits of lignocellulose biorefinery. Acetic acid acidolysis technology provides a promising application for xylo-oligosaccharide commercial production, but it is restricted by the aliphatic (wax-like)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052792/ https://www.ncbi.nlm.nih.gov/pubmed/33865437 http://dx.doi.org/10.1186/s13068-021-01952-8 |
Sumario: | BACKGROUND: Xylo-oligosaccharide is the spotlight of functional sugar that improves the economic benefits of lignocellulose biorefinery. Acetic acid acidolysis technology provides a promising application for xylo-oligosaccharide commercial production, but it is restricted by the aliphatic (wax-like) compounds, which cover the outer and inner surfaces of plants. RESULTS: We removed aliphatic compounds by extraction with two organic solvents. The benzene–ethanol extraction increased the yield of acidolyzed xylo-oligosaccharides of corncob, sugarcane bagasse, wheat straw, and poplar sawdust by 14.79, 21.05, 16.68, and 7.26% while ethanol extraction increased it by 11.88, 17.43, 1.26, and 13.64%, respectively. CONCLUSION: The single ethanol extraction was safer, more environmentally friendly, and more cost-effective than benzene–ethanol solvent. In short, organic solvent extraction provided a promising auxiliary method for the selective acidolysis of herbaceous xylan to xylo-oligosaccharides, while it had minimal impact on woody poplar. |
---|