Cargando…
Utilizing machine learning dimensionality reduction for risk stratification of chest pain patients in the emergency department
BACKGROUND: Chest pain is among the most common presenting complaints in the emergency department (ED). Swift and accurate risk stratification of chest pain patients in the ED may improve patient outcomes and reduce unnecessary costs. Traditional logistic regression with stepwise variable selection...
Autores principales: | Liu, Nan, Chee, Marcel Lucas, Koh, Zhi Xiong, Leow, Su Li, Ho, Andrew Fu Wah, Guo, Dagang, Ong, Marcus Eng Hock |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052947/ https://www.ncbi.nlm.nih.gov/pubmed/33865317 http://dx.doi.org/10.1186/s12874-021-01265-2 |
Ejemplares similares
-
Heart rate n-variability (HRnV) and its application to risk stratification of chest pain patients in the emergency department
por: Liu, Nan, et al.
Publicado: (2020) -
A novel cardiovascular risk stratification model incorporating ECG and heart rate variability for patients presenting to the emergency department with chest pain
por: Heldeweg, Micah Liam Arthur, et al.
Publicado: (2016) -
Heart rate n-variability (HRnV) measures for prediction of mortality in sepsis patients presenting at the emergency department
por: Liu, Nan, et al.
Publicado: (2021) -
Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection
por: Liu, Nan, et al.
Publicado: (2014) -
Combining Heart Rate Variability with Disease Severity Score Variables for Mortality Risk Stratification in Septic Patients Presenting at the Emergency Department
por: Pong, Jeremy Zhenwen, et al.
Publicado: (2019)